UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :article
Subject :QA Mathematics
ISBN :9781536193169; 9781536192407
Main Author :Wong, Chee Fah
Title :Development of genetic tools for protein overexpression from pseudomonas
Place of Production :Tanjung Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2021
Notes :The Encyclopedia of Bacteriology Research Developments
Corporate Name :Universiti Pendidikan Sultan Idris
HTTP Link :Click to view web link

Abstract : Universiti Pendidikan Sultan Idris
Overexpression of a number of industrially- and medically-important proteins is always a challenge for most researchers as genes from bacterial hosts especially from the opportunistic pathogen, Pseudomonas aeruginosa, as well as from other Pseudomonads were reported to be poorly expressed in E. coli. Examples continue to be published demonstrating that certain Pseudomonas proteins cannot be expressed at satisfactory levels in E. coli owing to their promoter variations, absence of specific molecular activators and poor protein translation. Nevertheless, the extension of E. coli-based technology to Pseudomonas can be used to overcome such barriers. In this chapter, the evolution and modification of genetic tools ranging from types of promoters, elements for interspecies transfer, origins of replications, regulatory genes, genes facilitating in genome integration and host strains, used in the construction of Escherichia-Pseudomonas shuttle expression vectors will be explored and discussed in detail. Protein overexpression data as documented by the constructed shuttle expression vectors in this chapter, may offer a new strategy to express abundant amount of active proteins which can be an important determinant factor for successful nuclear magnetic resonance (NMR) and X-ray crystallography studies especially involving proteins from Pseudomonas and its related genus. ? 2021 by Nova Science Publishers, Inc. All rights reserved.

References

Brosius, J. (1989). Superpolylinkers in cloning and expression vectors. DNA, 8(10), 759-777. doi:10.1089/dna.1989.8.759

Brunschwig, E., & Darzins, A. (1992). A two-component T7 system for the overexpression of genes in pseudomonas aeruginosa. Gene, 111(1), 35-41. doi:10.1016/0378-1119(92)90600-T

Chen, Z., Chen, H., Ni, Z., Tian, R., Zhang, T., Jia, J., & Yang, S. (2015). Expression and characterization of a novel nitrilase from hyperthermophilic bacterium thermotoga maritima MSB8. Journal of Microbiology and Biotechnology, 25(10), 1660-1669. doi:10.4014/jmb.1502.02032

Choi, K. -., Trunck, L. A., Kumar, A., Mima, T., Karkhoff-Schweizer, R. R., & Schweizer, H. P. (2008). Genetic tools for pseudomonas. Pseudomonas Genomics and Molecular Biology, , 65-86. Retrieved from www.scopus.com

Cook, T. B., Rand, J. M., Nurani, W., Courtney, D. K., Liu, S. A., & Pfleger, B. F. (2018). Genetic tools for reliable gene expression and recombineering in pseudomonas putida. Journal of Industrial Microbiology and Biotechnology, 45(7), 517-527. doi:10.1007/s10295-017-2001-5

Dammeyer, T., Steinwand, M., Krüger, S. -., Dübel, S., Hust, M., & Timmis, K. N. (2011). Efficient production of soluble recombinant single chain fv fragments by a pseudomonas putida strain KT2440 cell factory. Microbial Cell Factories, 10 doi:10.1186/1475-2859-10-11

Franklin, M. J., Chitnis, C. E., Gacesa, P., Sonesson, A., White, D. C., & Ohman, D. E. (1994). Pseudomonas aeruginosa AlgG is a polymer level alginate C5-mannuronan epimerase. Journal of Bacteriology, 176(7), 1821-1830. doi:10.1128/jb.176.7.1821-1830.1994

Hoang, T. T., Karkhoff-Schweizer, R. R., Kutchma, A. J., & Schweizer, H. P. (1998). A broad-host-range F1p-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: Application for isolation of unmarked pseudomonas aeruginosa mutants. Gene, 212(1), 77-86. doi:10.1016/S0378-1119(98)00130-9

Hoang, T. T., Kutchma, A. J., Becher, A., & Schweizer, H. P. (2000). Integration-proficient plasmids for pseudomonas aeruginosa: Site- specific integration and use for engineering of reporter and expression strains. Plasmid, 43(1), 59-72. doi:10.1006/plas.1999.1441

Huang, W., & Wilks, A. (2017). A rapid seamless method for gene knockout in pseudomonas aeruginosa. BMC Microbiology, 17(1) doi:10.1186/s12866-017-1112-5

Joshi, H., Dave, R., & Venugopalan, V. P. (2014). Protein as chemical cue: Non-nutritional growth enhancement by exogenous protein in pseudomonas putida KT2440. PLoS ONE, 9(8) doi:10.1371/journal.pone.0103730

Lanzer, M., & Bujard, H. (1988). Promoters largely determine the efficiency of repressor action. Proceedings of the National Academy of Sciences of the United States of America, 85(23), 8973-8977. doi:10.1073/pnas.85.23.8973

Liu, W., Li, M., & Yan, Y. (2017). Heterologous expression and characterization of a new lipase from pseudomonas fluorescens Pf0-1 and used for biodiesel production. Scientific Reports, 7(1) doi:10.1038/s41598-017-16036-7

Loeschcke, A., & Thies, S. (2015). Pseudomonas putida—a versatile host for the production of natural products. Applied Microbiology and Biotechnology, 99(15), 6197-6214. doi:10.1007/s00253-015-6745-4

Martinez, E., Bartolomé, B., & de la Cruz, F. (1988). pACYC184-derived cloning vectors containing the multiple cloning site and lacZα reporter gene of pUC8/9 and pUC18/19 plasmids. Gene, 68(1), 159-162. doi:10.1016/0378-1119(88)90608-7

Minton, N. P., Atkinson, T., & Sherwood, R. F. (1983). Molecular cloning of the pseudomonas carboxypeptidase G2 gene and its expression in escherichia coli and pseudomonas putida. Journal of Bacteriology, 156(3), 1222-1227. Retrieved from www.scopus.com

Pasloske, B. L., Drummond, D. S., Frost, L. S., & Paranchych, W. (1989). The activity of the pseudomonas aeruginosa pilin promoter is enhanced by an upstream regulatory site. Gene, 81(1), 25-34. doi:10.1016/0378-1119(89)90333-8

Pearson, J. P., Pesci, E. C., & Iglewski, B. H. (1997). Roles of pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. Journal of Bacteriology, 179(18), 5756-5767. doi:10.1128/jb.179.18.5756-5767.1997

Retallack, D. M., Jin, H., & Chew, L. (2012). Reliable protein production in a pseudomonas fluorescens expression system. Protein Expression and Purification, 81(2), 157-165. doi:10.1016/j.pep.2011.09.010

Retallack, D. M., Schneider, J. C., Mitchell, J., Chew, L., & Liu, H. (2007). Transport of heterologous proteins to the periplasmic space of pseudomonas fluorescens using a variety of native signal sequences. Biotechnology Letters, 29(10), 1483-1491. doi:10.1007/s10529-007-9415-5

Rong Fu Wang, & Kushner, S. R. (1991). Construction of versatile low-copy-number vectors for cloning, sequencing and gene expression in escherichia coli. Gene, 100(C), 195-199. doi:10.1016/0378-1119(91)90366-J

Rothmel, R. K., Chakrabarty, A. M., Berry, A., & Darzins, A. (1991). Genetic systems in pseudomonas doi:10.1016/0076-6879(91)04025-J Retrieved from www.scopus.com

Scholz, P., Haring, V., Wittmann-Liebold, B., Ashman, K., Bagdasarian, M., & Scherzinger, E. (1989). Complete nucleotide sequence and gene organization of the broad-host-range plasmid RSF1010. Gene, 75(2), 271-288. doi:10.1016/0378-1119(89)90273-4

Schumann, W. (2008). 'Escherichia coli cloning and expression vectors'. Plasmids: Current Research and Future Trends, , 1. Retrieved from www.scopus.com

Schweizer, H. P. (1992). Alielic exchange in pseudomonas aeruginosa using novel ColE1‐type vectors and a family of cassettes containing a portable oriT and the counter‐selectable bacillus subtilis sacB marker. Molecular Microbiology, 6(9), 1195-1204. doi:10.1111/j.1365-2958.1992.tb01558.x

Schweizer, H. P. (1993). Small broad-host-range gentamycin resistance gene cassettes for site- specific insertion and deletion mutagenesis. BioTechniques, 15(5), 831-832+834. Retrieved from www.scopus.com

Schweizer, H. P. (2001). Vectors to express foreign genes and techniques to monitor gene expression in pseudomonads. Current Opinion in Biotechnology, 12(5), 439-445. doi:10.1016/S0958-1669(00)00242-1

Schweizer, H. P., & Hoang, T. T. (1995). An improved system for gene replacement and xylE fusion analysis in pseudomonas aeruginosa. Gene, 158(1), 15-22. doi:10.1016/0378-1119(95)00055-B

Studier, F. W., & Moffatt, B. A. (1986). Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. Journal of Molecular Biology, 189(1), 113-130. doi:10.1016/0022-2836(86)90385-2

Suh, S. -., Silo-Suh, L. A., & Ohman, D. E. (2004). Development of tools for the genetic manipulation of pseudomonas aeruginosa. Journal of Microbiological Methods, 58(2), 203-212. doi:10.1016/j.mimet.2004.03.018

Thomas, C. M. (1981). Molecular genetics of broad host range plasmid RK2. Plasmid, 5(1), 10-19. doi:10.1016/0147-619X(81)90074-3

Tosi, T., Estrozi, L. F., Job, V., Guilvout, I., Pugsley, A. P., Schoehn, G., & Dessen, A. (2014). Structural similarity of secretins from type II and type III secretion systems. Structure, 22(9), 1348-1355. doi:10.1016/j.str.2014.07.005

Vareechon, C., Zmina, S. E., Karmakar, M., Pearlman, E., & Rietsch, A. (2017). Pseudomonas aeruginosa effector ExoS inhibits ROS production in human neutrophils. Cell Host and Microbe, 21(5), 611-618.e5. doi:10.1016/j.chom.2017.04.001

Wang, Z., Xiong, G., & Lutz, F. (1995). Site-specific integration of the phage ΦCTX genome into the pseudomonas aeruginosa chromosome: Characterization of the functional integrase gene located close to and upstream of attP. Mgg Molecular & General Genetics, 246(1), 72-79. doi:10.1007/BF00290135

Warren, J. W., Walker, J. R., Roth, J. R., & Altman, E. (2000). Construction and characterization of a highly regulable expression vector, pLAC11, and its multipurpose derivatives, pLAC22 and pLAC33. Plasmid, 44(2), 138-151. doi:10.1006/plas.2000.1477

West, S. E. H., & Iglewski, B. H. (1988). Codon usage in pseudomonas aeruginosa. Nucleic Acids Research, 16(19), 9323-9335. doi:10.1093/nar/16.19.9323

West, S. E. H., Schweizer, H. P., Dall, C., Sample, A. K., & Runyen-Janecky, L. J. (1994). Construction of improved escherichia-pseudomonas shuttle vectors derived from pUC18/19 and sequence of the region required for their replication in pseudomonas aeruginosa. Gene, 148(1), 81-86. doi:10.1016/0378-1119(94)90237-2

Wilton, R., Ahrendt, A. J., Shinde, S., Sholto-Douglas, D. J., Johnson, J. L., Brennan, M. B., & Kemner, K. M. (2018). A new suite of plasmid vectors for fluorescence-based imaging of root colonizing pseudomonads. Frontiers in Plant Science, 8 doi:10.3389/fpls.2017.02242

Zhang, W., Lu, J., Zhang, S., Liu, L., Pang, X., & Lv, J. (2018). Development an effective system to expression recombinant protein in E. coli via comparison and optimization of signal peptides: Expression of pseudomonas fluorescens BJ-10 thermostable lipase as case study. Microbial Cell Factories, 17(1) doi:10.1186/s12934-018-0894-y


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.