UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :article
Subject :QA Mathematics
ISSN :1392-0340
Main Author :Zulkifley Mohammad
Title :Effectiveness of the metacognitive – based algebra learning model [Metakognityvinio algebros mokymosi modelio veiksmingumas]
Place of Production :Tanjung Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2021
Notes :Pedagogika
Corporate Name :Universiti Pendidikan Sultan Idris
HTTP Link :Click to view web link

Abstract : Universiti Pendidikan Sultan Idris
Annotation. Learning approaches are among the critical factors that determine learning effectiveness. A typical learning approach that promotes student awareness will result in successful learning. This article examines the effectiveness of a metacognitive-based algebra learning from three aspects, namely: 1) learning outcomes; 2) student responses; and 3) student activities in learning algebra. The results show that all three aspects meet the effectiveness criteria of me-tacognitive approach in learning algebra.

References

(2008). Pendekatan Metakognitif Sebagai Alternatif Pembelajaran Matematika Untuk Meningkatkan Kemampuan Berpikir Kritis Mahasiswa PGSD [Metacognitive Approach as an Alternative for Learning Mathematics to Improve the Critical Thinking Ability of PGSD Students, Retrieved from www.scopus.com

Ahmad, H., Febryanti, F., & Muthmainnah. (2018). Description of student's metacognitive ability in understanding and solving mathematics problem. Paper presented at the IOP Conference Series: Materials Science and Engineering, , 300(1) doi:10.1088/1757-899X/300/1/012048 Retrieved from www.scopus.com

Alzahrani, K. S. (2017). Metacognition and its role in mathematics learning: An exploration of the perceptions of a teacher and students in a secondary school. International Electronic Journal of Mathematics Education, 12(3), 521-537. Retrieved from www.scopus.com

Amin, I., & Mariani, S. (2017). PME learning model: The conceptual theoretical study of metacognition learning in mathematics problem solving based on constructivism. International Electronic Journal of Mathematics Education, 12(3), 333-352. Retrieved from www.scopus.com

Bradshaw, Z., & Hazell, A. (2017). Developing problem-solving skills in mathematics: A lesson study. International Journal for Lesson and Learning Studies, 6(1), 32-44. doi:10.1108/IJLLS-09-2016-0032

Browning, C., Edson, A. J., Kimani, P. M., & Aslan-Tutak, F. (2014). Mathematical content knowledge for teaching elementary mathematics: A focus on geometry and measurement. Mathematics Enthusiast, 11(2), 333-383. Retrieved from www.scopus.com

Chu, P., & Chien, Y. (2017). The effectiveness of using stereoscopic 3D for proportion estimation in product design education. Eurasia Journal of Mathematics, Science and Technology Education, 13(10), 6635-6648. doi:10.12973/ejmste/78183

Fortunato, I., Hecht, D., Tittle, C. K., & Alvarez, L. (1991). Metacognition and problem solving. Arithmetic Teacher, 39(4), 38-40. Retrieved from www.scopus.com

Hacker, D. J., Kiuhara, S. A., & Levin, J. R. (2019). A metacognitive intervention for teaching fractions to students with or at-risk for learning disabilities in mathematics. ZDM - Mathematics Education, 51(4), 601-612. doi:10.1007/s11858-019-01040-0

Hightower, R. W. (2018). Teaching both Cognitive and Metacognitive Skills for Mathematics Literacy: A Case Study of Elementary School Students with Disabilities in Florida, Retrieved from www.scopus.com

In’Am, A. (2015). Menguak Penyelesaian Masalah Matematika: Analisis Pendekatan Matekognitif Dan Model Polya, Retrieved from www.scopus.com

In’am, A. (2016). Euclidean geometry’s problem solving based on metacognitive in aspect of awareness. Mathematics Education, 11(4), 961-974. Retrieved from www.scopus.com

In'am, A. (2014). The implementation of the polya method in solving euclidean geometry problems. International Education Studies, 7(7), 149-158. doi:10.5539/ies.v7n7p149

Lai, Y., Zhu, X., Chen, Y., & Li, Y. (2015). Effects of mathematics anxiety and mathematical metacognition on word problem solving in children with and without mathematical learning difficulties. PLoS ONE, 10(6) doi:10.1371/journal.pone.0130570

Lee, M. Y. (2018). Further investigation into the quality of teachers' noticing expertise: A proposed framework for evaluating teachers' models of students' mathematical thinking. Eurasia Journal of Mathematics, Science and Technology Education, 14(11) doi:10.29333/ejmste/92019

Lin, X. (2001). Designing metacognitive activities. Educational Technology Research and Development, 49(2), 23-40. doi:10.1007/BF02504926

Mayer, R. E. (1998). Cognitive, metacognitive, and motivational aspects of problem solving. Instructional Science, 26(1-2), 49-63. doi:10.1023/a:1003088013286

Novak, E., & Tassell, J. L. (2017). Studying preservice teacher math anxiety and mathematics performance in geometry, word, and non-word problem solving. Learning and Individual Differences, 54, 20-29. doi:10.1016/j.lindif.2017.01.005

Nurdin. (2007). Model Pembelajaran Matematika Untuk Menumbuhkan Kemampuan Metakognitif (Model PMKM)., Retrieved from www.scopus.com

Phonapichat, P., Wongwanich, S., & Sujiva, S. (2014). An analysis of elementary school students' difficulties in mathematical problem solving. Procedia-Social and Behavioral Sciences, 116(2012), 3169-3174. Retrieved from www.scopus.com

Rebello, N. S., Cui, L., Bennett, A. G., Zollman, D. A., & Ozimek, D. J. (2017). Transfer of learning in problem solving in the context of mathematics and physics. Learning to solve complex scientific problems (pp. 223-246) doi:10.4324/781315091938-10 Retrieved from www.scopus.com

 

Sa’diyah, C. (2006). Pengembangan Model Pembelajaran Matematika Beracuan Konstruktivisme Untuk Siswa SMP [Development of a Mathematics Earning Model Based on Constructivism for Junior High School Students], Retrieved from www.scopus.com

Sakshaug, L. E., & Wohlhuter, K. A. (2010). Journey toward teaching mathematics through problem solving. School Science and Mathematics, 110(8), 397-409. Retrieved from www.scopus.com

Sfard, A. (1995). The development of algebra: Confronting historical and psychological perspectives. Journal of Mathematical Behavior, 14(1), 15-39. doi:10.1016/0732-3123(95)90022-5

Telaumbanua, Y. N., Sinaga, B., Mukhtar, M., & Surya, E. (2017). Development of mathematics module based on metacognitive strategy in improving students' mathematical problem solving ability at high school. Journal of Education and Practice, 8(19), 73-80. Retrieved from www.scopus.com

Temur, O. D., Ozsoy, G., & Turgut, S. (2019). Metacognitive instructional behaviours of preschool teachers in mathematical activities. ZDM - Mathematics Education, 51(4), 655-666. doi:10.1007/s11858-019-01069-1

Topcu, A., & Ubuz, B. (2008). The effects of metacognitive knowledge on the pre-service teachers' participation in the asynchronous online forum. Educational Technology and Society, 11(3), 1-12. Retrieved from www.scopus.com

Wilson, J., & Clarke, D. (2004). Towards the modelling of mathematical metacognition. Mathematics Education Research Journal, 16(2), 25-48. doi:10.1007/BF03217394


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.