UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
Annotation. Learning approaches are among the critical factors that determine learning effectiveness. A typical learning approach that promotes student awareness will result in successful learning. This article examines the effectiveness of a metacognitive-based algebra learning from three aspects, namely: 1) learning outcomes; 2) student responses; and 3) student activities in learning algebra. The results show that all three aspects meet the effectiveness criteria of me-tacognitive approach in learning algebra. |
References |
(2008). Pendekatan Metakognitif Sebagai Alternatif Pembelajaran Matematika Untuk Meningkatkan Kemampuan Berpikir Kritis Mahasiswa PGSD [Metacognitive Approach as an Alternative for Learning Mathematics to Improve the Critical Thinking Ability of PGSD Students, Retrieved from www.scopus.com Ahmad, H., Febryanti, F., & Muthmainnah. (2018). Description of student's metacognitive ability in understanding and solving mathematics problem. Paper presented at the IOP Conference Series: Materials Science and Engineering, , 300(1) doi:10.1088/1757-899X/300/1/012048 Retrieved from www.scopus.com Alzahrani, K. S. (2017). Metacognition and its role in mathematics learning: An exploration of the perceptions of a teacher and students in a secondary school. International Electronic Journal of Mathematics Education, 12(3), 521-537. Retrieved from www.scopus.com Amin, I., & Mariani, S. (2017). PME learning model: The conceptual theoretical study of metacognition learning in mathematics problem solving based on constructivism. International Electronic Journal of Mathematics Education, 12(3), 333-352. Retrieved from www.scopus.com Bradshaw, Z., & Hazell, A. (2017). Developing problem-solving skills in mathematics: A lesson study. International Journal for Lesson and Learning Studies, 6(1), 32-44. doi:10.1108/IJLLS-09-2016-0032 Browning, C., Edson, A. J., Kimani, P. M., & Aslan-Tutak, F. (2014). Mathematical content knowledge for teaching elementary mathematics: A focus on geometry and measurement. Mathematics Enthusiast, 11(2), 333-383. Retrieved from www.scopus.com Chu, P., & Chien, Y. (2017). The effectiveness of using stereoscopic 3D for proportion estimation in product design education. Eurasia Journal of Mathematics, Science and Technology Education, 13(10), 6635-6648. doi:10.12973/ejmste/78183 Fortunato, I., Hecht, D., Tittle, C. K., & Alvarez, L. (1991). Metacognition and problem solving. Arithmetic Teacher, 39(4), 38-40. Retrieved from www.scopus.com Hacker, D. J., Kiuhara, S. A., & Levin, J. R. (2019). A metacognitive intervention for teaching fractions to students with or at-risk for learning disabilities in mathematics. ZDM - Mathematics Education, 51(4), 601-612. doi:10.1007/s11858-019-01040-0 Hightower, R. W. (2018). Teaching both Cognitive and Metacognitive Skills for Mathematics Literacy: A Case Study of Elementary School Students with Disabilities in Florida, Retrieved from www.scopus.com In’Am, A. (2015). Menguak Penyelesaian Masalah Matematika: Analisis Pendekatan Matekognitif Dan Model Polya, Retrieved from www.scopus.com In’am, A. (2016). Euclidean geometry’s problem solving based on metacognitive in aspect of awareness. Mathematics Education, 11(4), 961-974. Retrieved from www.scopus.com In'am, A. (2014). The implementation of the polya method in solving euclidean geometry problems. International Education Studies, 7(7), 149-158. doi:10.5539/ies.v7n7p149 Lai, Y., Zhu, X., Chen, Y., & Li, Y. (2015). Effects of mathematics anxiety and mathematical metacognition on word problem solving in children with and without mathematical learning difficulties. PLoS ONE, 10(6) doi:10.1371/journal.pone.0130570 Lee, M. Y. (2018). Further investigation into the quality of teachers' noticing expertise: A proposed framework for evaluating teachers' models of students' mathematical thinking. Eurasia Journal of Mathematics, Science and Technology Education, 14(11) doi:10.29333/ejmste/92019 Lin, X. (2001). Designing metacognitive activities. Educational Technology Research and Development, 49(2), 23-40. doi:10.1007/BF02504926 Mayer, R. E. (1998). Cognitive, metacognitive, and motivational aspects of problem solving. Instructional Science, 26(1-2), 49-63. doi:10.1023/a:1003088013286 Novak, E., & Tassell, J. L. (2017). Studying preservice teacher math anxiety and mathematics performance in geometry, word, and non-word problem solving. Learning and Individual Differences, 54, 20-29. doi:10.1016/j.lindif.2017.01.005 Nurdin. (2007). Model Pembelajaran Matematika Untuk Menumbuhkan Kemampuan Metakognitif (Model PMKM)., Retrieved from www.scopus.com Phonapichat, P., Wongwanich, S., & Sujiva, S. (2014). An analysis of elementary school students' difficulties in mathematical problem solving. Procedia-Social and Behavioral Sciences, 116(2012), 3169-3174. Retrieved from www.scopus.com Rebello, N. S., Cui, L., Bennett, A. G., Zollman, D. A., & Ozimek, D. J. (2017). Transfer of learning in problem solving in the context of mathematics and physics. Learning to solve complex scientific problems (pp. 223-246) doi:10.4324/781315091938-10 Retrieved from www.scopus.com
Sa’diyah, C. (2006). Pengembangan Model Pembelajaran Matematika Beracuan Konstruktivisme Untuk Siswa SMP [Development of a Mathematics Earning Model Based on Constructivism for Junior High School Students], Retrieved from www.scopus.com Sakshaug, L. E., & Wohlhuter, K. A. (2010). Journey toward teaching mathematics through problem solving. School Science and Mathematics, 110(8), 397-409. Retrieved from www.scopus.com Sfard, A. (1995). The development of algebra: Confronting historical and psychological perspectives. Journal of Mathematical Behavior, 14(1), 15-39. doi:10.1016/0732-3123(95)90022-5 Telaumbanua, Y. N., Sinaga, B., Mukhtar, M., & Surya, E. (2017). Development of mathematics module based on metacognitive strategy in improving students' mathematical problem solving ability at high school. Journal of Education and Practice, 8(19), 73-80. Retrieved from www.scopus.com Temur, O. D., Ozsoy, G., & Turgut, S. (2019). Metacognitive instructional behaviours of preschool teachers in mathematical activities. ZDM - Mathematics Education, 51(4), 655-666. doi:10.1007/s11858-019-01069-1 Topcu, A., & Ubuz, B. (2008). The effects of metacognitive knowledge on the pre-service teachers' participation in the asynchronous online forum. Educational Technology and Society, 11(3), 1-12. Retrieved from www.scopus.com Wilson, J., & Clarke, D. (2004). Towards the modelling of mathematical metacognition. Mathematics Education Research Journal, 16(2), 25-48. doi:10.1007/BF03217394 |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |