UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
To date, considerable research has been devoted to semipolar (11?22) III-N based-light-emitting diodes due to the high demand for the future generation of high indium adsorption materials. However, higher indium content can generate stacking fault defects and partial dislocation that deteriorate the crystal, morphological, and optical quality. This study describes the effect of indium flux and two-dimensional nanoscale strain periodic alternating superlattices on the surface evolution during the growth of semi-polar (11?22) InGaN light-emitting diodes. Semi-polar (11?22) light-emitting diodes were grown on different templates with and without AlN/GaN strain periodic alternating superlattices. A direct correlation between the surface evolution, crystal quality, and optical properties was demonstrated, suggesting higher indium adsorption with increased crystallinity. Moderate indium flux induced lower surface undulation with intensified photoluminescence emission in the green range. Substantial improvement in the crystal quality of semi-polar (11?22) InGaN light-emitting diode was achieved using AlN/GaN strain periodic alternating superlattice. A sample with an AlN/GaN strain periodic alternating superlattice had the lowest terrace size density of ? 100 nm2 with no terrace sizes > 400 nm2, indicating a homogeneous terrace size distribution. In addition, the AlN/GaN template improved the optical properties, red shifting the photoluminescence to almost 15 nm from 495 nm (without superlattices). These findings demonstrate the potential of obtaining high indium adsorption semi-polar light-emitting diodes on large-scale sapphires with inexpensive feasibility. ? 2021 Elsevier Ltd |
References |
Ahmad Makinudin, A. H., Al-Zuhairi, O., Anuar, A., Zainorin, M. Z., Abu Bakar, A. S., DenBaars, S., & Supangat, A. (2021). Impact of crystallinity towards the performance of semi-polar (11–22) GaN UV photodetector. Materials Letters, 286 doi:10.1016/j.matlet.2020.129244 Ahmad Makinudin, A. H., Omar, A. -., Anuar, A., Bakar, A. S. A., Denbaars, S. P., & Supangat, A. (2019). Impact of a strained periodic multilayer on the surface and crystal quality of a semipolar (11-22) GaN template. Crystal Growth and Design, 19(11), 6092-6099. doi:10.1021/acs.cgd.9b00206 Anuar, A., Ahmad Makinudin, A. H., Al-Zuhairi, O., Abu Bakar, A. S., & Supangat, A. (2020). Crystal quality and surface structure tuning of semi-polar (11–22) GaN on m-plane sapphire via in-situ multiple ammonia treatment. Thin Solid Films, 697 doi:10.1016/j.tsf.2020.137817 Anuar, A., Ahmad Makinudin, A. H., Al-Zuhairi, O., Chanlek, N., Abu Bakar, A. S., & Supangat, A. (2020). Growth of semi-polar (112¯2) GaN on m-plane sapphire via in-situ multiple ammonia treatment (I-SMAT) method. Vacuum, 174 doi:10.1016/j.vacuum.2020.109208 Azman, A., Kamarundzaman, A., Abu Bakar, A. S., & Abd Majid, W. H. (2021). The optimization of n-type and p-type m-plane GaN grown on m-plane sapphire substrate by metal organic chemical vapor deposition. Materials Science in Semiconductor Processing, 131 doi:10.1016/j.mssp.2021.105836 Azman, A., Shuhaimi, A., Omar, A. -., Kamarundzaman, A., Khudus, M. I. M. A., Ariff, A., . . . Rahman, S. A. (2018). Metal organic chemical vapor deposition of m-plane GaN epi-layer using a three-step approach towards enhanced surface morphology. Thin Solid Films, 667, 48-54. doi:10.1016/j.tsf.2018.09.052 Bae, S. Y., Lee, D. S., Kong, B. H., Cho, H. K., Kaeding, J. F., Nakamura, S., . . . Speck, J. S. (2011). Electroluminescence enhancement of (112̄2) semipolar GaN light-emitting diodes grown on miscut m-plane sapphire substrates. Current Applied Physics, 11(3), 954-958. doi:10.1016/j.cap.2011.01.001 Chen, H. -., Lu, C. -., Yeh, D. -., Huang, C. -., Huang, J. -., & Yang, C. -. (2006). Orange-red light-emitting diodes based on a prestrained ingan-gan quantum-well epitaxy structure. IEEE Photonics Technology Letters, 18(21), 2269-2271. doi:10.1109/LPT.2006.884884 Dasilva, Y. A. R., Chauvat, M. P., Ruterana, P., Lahourcade, L., Monroy, E., & Nataf, G. (2010). Defect structure in heteroepitaxial semipolar (1122) (ga, al)N. Journal of Physics Condensed Matter, 22(35) doi:10.1088/0953-8984/22/35/355802 De Mierry, P., Guehne, T., Nemoz, M., Chenot, S., & Beraudo, E. (2009). Comparison between polar (0001) and semipolar (112̄2) nitride blue-green light-emitting diodes grown on c- and m-plane sapphire substrates. Japanese Journal of Applied Physics, 48(3), 031002. doi:10.1143/JJAP.48.031002 Denton, A. R., & Ashcroft, N. W. (1991). Vegards law. Physical Review A, 43(6), 3161-3164. doi:10.1103/PhysRevA.43.3161 Dinh, D. V., Corbett, B., Parbrook, P. J., Koslow, I. L., Rychetsky, M., Guttmann, M., . . . Weyers, M. (2016). Role of substrate quality on the performance of semipolar (11 2 - 2) InGaN light-emitting diodes. Journal of Applied Physics, 120(13) doi:10.1063/1.4963757 Dinh, D. V., Skuridina, D., Solopow, S., Frentrup, M., Pristovsek, M., Vogt, P., . . . Szczepaska, A. (2012). Growth and characterizations of semipolar (11 2̄2) InN. Journal of Applied Physics, 112(1) doi:10.1063/1.4733997 Funato, M., Ueda, M., Kawakami, Y., Narukawa, Y., Kosugi, T., Takahashi, M., & Mukai, T. (2006). Blue, green, and amber InGaN/GaN light-emitting diodes on semipolar {1122} GaN bulk substrates. Japanese Journal of Applied Physics, Part 2: Letters, 45(24-28), L659-L662. doi:10.1143/JJAP.45.L659 Gleize, J., Demangeot, F., Frandon, J., Renucci, M. A., Widmann, F., & Daudin, B. (1999). Phonons in a strained hexagonal GaN-AlN superlattice. Applied Physics Letters, 74(5), 703-705. doi:10.1063/1.122993 Guo, H., Sun, Y., Wang, H., Zeng, X., Xu, K., Zhang, B., & Yang, H. (2019). Optical and spatial resolved cathodoluminescence study of phase separation in green InGaN sandwiched structure grown on GaN nanorods by MOCVD. Materials Today Communications, 20 doi:10.1016/j.mtcomm.2019.100563 Jang, J., Lee, K., Hwang, J., Jung, J., Lee, S., Lee, K., . . . Nam, O. (2012). Improvement of crystal quality and optical property in (11-22) semipolar InGaN/GaN LEDs grown on patterned m-plane sapphire substrate. Journal of Crystal Growth, 361(1), 166-170. doi:10.1016/j.jcrysgro.2012.08.052 Jiang, T., Xu, S., Zhang, J., Li, P., Huang, J., Niu, M., . . . Hao, Y. (2016). Temperature dependence of the raman-active modes in the semipolar (11 2¯2) plane GaN film. Journal of Applied Physics, 120(24) doi:10.1063/1.4972951 Kamarudzaman, A., Abu Bakar, A. S. B., Azman, A., Omar, A. -., Supangat, A., & Talik, N. A. (2020). Positioning of periodic AlN/GaN multilayers: Effect on crystalline quality of a-plane GaN. Materials Science in Semiconductor Processing, 105 doi:10.1016/j.mssp.2019.104700 Kim, J. H., Hwang, S. -., Baik, K. H., & Park, J. H. (2014). Effect of basal-plane stacking faults on X-ray diffraction of non-polar (1120) a-plane GaN films grown on (1102) r-plane sapphire substrates. Journal of Semiconductor Technology and Science, 14(5), 557-565. doi:10.5573/JSTS.2014.14.5.557 Kriouche, N., Venénguès, P., Nemoz, M., Nataf, G., & De Mierry, P. (2010). Stacking faults blocking process in (1 1 -2 2) semipolar GaN growth on sapphire using asymmetric lateral epitaxy. Journal of Crystal Growth, 312(19), 2625-2630. doi:10.1016/j.jcrysgro.2010.05.038 Lazarev, S., Bauer, S., Meisch, T., Bauer, M., Tischer, I., Barchuk, M., . . . Baumbach, T. (2013). Three-dimensional reciprocal space mapping of diffuse scattering for the study of stacking faults in semipolar (112 2) GaN layers grown from the sidewall of an r-patterned sapphire substrate. Journal of Applied Crystallography, 46(5), 1425-1433. doi:10.1107/S0021889813020438 Lee, D. -., Jang, J. -., Kong, B. -., Cho, H. -., & Nam, O. (2010). Regrowth of semipolar GaN on nanoporous GaN template by metal organic chemical vapor deposition. Japanese Journal of Applied Physics, 49(5 PART 1), 0580011-0580012. doi:10.1143/JJAP.49.058001 Lee, J. -., Han, S. -., Song, K. -., & Lee, S. -. (2014). Optical and electrical improvements of semipolar (1 1 -2 2) GaN-based light emitting diodes by si doping of n-GaN template. Journal of Alloys and Compounds, 598, 85-88. doi:10.1016/j.jallcom.2014.02.031 Li, H., Xiang, H., Huang, H., Zeng, Z., & Peng, X. (2020). Interface structure and deformation mechanisms of AlN/GaN multilayers. Ceramics International, 46(8), 11556-11562. doi:10.1016/j.ceramint.2020.01.182 Li, P., Li, H., Li, Z., Kang, J., Yi, X., Li, J., & Wang, G. (2015). Strong carrier localization effect in carrier dynamics of 585 nm InGaN amber light-emitting diodes. Journal of Applied Physics, 117(7) doi:10.1063/1.4906960 Lin, D. -., Lee, C. -., Liu, C. -., Han, H. -., Lan, Y. -., Lin, C. -., . . . Kuo, H. -. (2012). Efficiency and droop improvement in green InGaN/GaN light-emitting diodes on GaN nanorods template with SiO2 nanomasks. Applied Physics Letters, 101(23) doi:10.1063/1.4768950 Liu, J., Jia, Z., Ma, S., Dong, H., Zhai, G., & Xu, B. (2018). Enhancement of carrier localization effect and internal quantum efficiency through in-rich InGaN quantum dots. Superlattices and Microstructures, 113, 497-501. doi:10.1016/j.spmi.2017.11.026 Makinudin, A. H. A., Omar, A. -., Bakar, A. S. A., Anuar, A., & Supangat, A. (2021). Disilane doping of semi-polar (11-22) n-GaN: The impact of terrace-like evolution toward the enhancement of the electrical properties. Thin Solid Films, 720 doi:10.1016/j.tsf.2020.138489 Masui, H., Nakamura, S., DenBaars, S. P., & Mishra, U. K. (2010). Nonpolar and semipolar III-nitride light-emitting diodes: Achievements and challenges. IEEE Transactions on Electron Devices, 57(1), 88-100. doi:10.1109/TED.2009.2033773 McLaurin, M. B., Hirai, A., Young, E., Wu, F., & Speck, J. S. (2008). Basal plane stacking-fault related anisotropy in X-ray rocking curve widths of m-plane GaN. Japanese Journal of Applied Physics, 47(7 PART 1), 5429-5431. doi:10.1143/JJAP.47.5429 Mogilatenko, A., Kirmse, H., Stellmach, J., Frentrup, M., Mehnke, F., Wernicke, T., . . . Weyers, M. (2014). Analysis of crystal orientation in AlN layers grown on m-plane sapphire. Journal of Crystal Growth, 400, 54-60. doi:10.1016/j.jcrysgro.2014.04.014 Monavarian, M., Izyumskaya, N., Müller, M., Metzner, S., Veit, P., Can, N., . . . Avrutin, V. (2016). Improvement of optical quality of semipolar (1122) GaN on m-plane sapphire by in-situ epitaxial lateral overgrowth. Journal of Applied Physics, 119(14) doi:10.1063/1.4945770 Monavarian, M., Metzner, S., Izyumskaya, N., Okur, S., Zhang, F., Can, N., . . . Morkoç, H. (2015). Indium-incorporation efficiency in semipolar (1122) oriented InGaN-based light emitting diodes. Paper presented at the Proceedings of SPIE - the International Society for Optical Engineering, , 9363 doi:10.1117/12.2080325 Retrieved from www.scopus.com Moram, M. A., Johnston, C. F., Hollander, J. L., Kappers, M. J., & Humphreys, C. J. (2009). Understanding x-ray diffraction of nonpolar gallium nitride films. Journal of Applied Physics, 105(11) doi:10.1063/1.3129307 Moram, M. A., & Vickers, M. E. (2009). X-ray diffraction of III-nitrides. Reports on Progress in Physics, 72(3) doi:10.1088/0034-4885/72/3/036502 Moret, M., Gil, B., Ruffenach, S., Briot, O., Giesen, C., Heuken, M., . . . Succi, M. (2009). Optical, structural investigations and band-gap bowing parameter of GaInN alloys. Journal of Crystal Growth, 311(10), 2795-2797. doi:10.1016/j.jcrysgro.2009.01.009 Morko̧, H. (2008). Handbook of Nitride Semiconductors and Devices, Retrieved from www.scopus.com Moses, P. G., Miao, M., Yan, Q., & Van De Walle, C. G. (2011). Hybrid functional investigations of band gaps and band alignments for AlN, GaN, InN, and InGaN. Journal of Chemical Physics, 134(8) doi:10.1063/1.3548872 Mu, Q., Xu, M., Wang, X., Wang, Q., Lv, Y., Feng, Z., . . . Ji, Z. (2016). Influence of the InGaN/GaN quasi-superlattice underlying layer on photoluminescence in InGaN/GaN multiple quantum wells. Physica E: Low-Dimensional Systems and Nanostructures, 76, 1-5. doi:10.1016/j.physe.2015.10.010 Mukundan, S., Mohan, L., Chandan, G., Roul, B., & Krupanidhi, S. B. (2014). Semipolar and nonpolar GaN epi-films grown on m-sapphire by plasma assisted molecular beam epitaxy. Journal of Applied Physics, 116(20) doi:10.1063/1.4902892 Nakamura, S. (1998). The roles of structural imperfections in InGaN-based blue light- emitting diodes and laser diodes. Science, 281(5379), 956-961. doi:10.1126/science.281.5379.956 Nakamura, S., Senoh, M., & Mukai, T. (1993). High-power InGaN/GaN double-heterostructure violet light emitting diodes. Applied Physics Letters, 62(19), 2390-2392. doi:10.1063/1.109374 Narukawa, Y., Ichikawa, M., Sanga, D., Sano, M., & Mukai, T. (2010). White light emitting diodes with super-high luminous efficacy. Journal of Physics D: Applied Physics, 43(35) doi:10.1088/0022-3727/43/35/354002 Northrup, J. E. (2009). GaN and InGaN (1122) surfaces: Group-III adlayers and indium incorporation. Applied Physics Letters, 95(13) doi:10.1063/1.3240401 Oh, D. -., Jang, J. -., Nam, O., Song, K. -., & Lee, S. -. (2011). Study of green light-emitting diodes grown on semipolar (1122) GaN/m-sapphire with different crystal qualities. Journal of Crystal Growth, 326(1), 33-36. doi:10.1016/j.jcrysgro.2011.01.046 Omar, A. -., Shuhaimi Bin Abu Bakar, A., Makinudin, A. H. A., Khudus, M. I. M. A., Azman, A., Kamarundzaman, A., & Supangat, A. (2018). Effect of low NH3 flux towards high quality semi-polar (11-22) GaN on m-plane sapphire via MOCVD. Superlattices and Microstructures, 117, 207-214. doi:10.1016/j.spmi.2018.03.038 Omar, A. -., Shuhaimi, A., Makinudin, A. H. A., Abdul Khudus, M. I. M., & Supangat, A. (2018). Embedded AlN/GaN multi-layer for enhanced crystal quality and surface morphology of semi-polar (11-22) GaN on m-plane sapphire. Materials Science in Semiconductor Processing, 86, 1-7. doi:10.1016/j.mssp.2018.06.014 Pereira, S., Correia, M. R., Monteiro, T., Pereira, E., Alves, E., Sequeira, A. D., & Franco, N. (2001). Compositional dependence of the strain-free optical band gap in InxGa1 - xN layers. Applied Physics Letters, 78(15), 2137-2139. doi:10.1063/1.1358368 Ploch, S., Wernicke, T., Dinh, D. V., Pristovsek, M., & Kneissl, M. (2012). Surface diffusion and layer morphology of ((112̄2)) GaN grown by metal-organic vapor phase epitaxy. Journal of Applied Physics, 111(3) doi:10.1063/1.3682513 Romanov, A. E., Baker, T. J., Nakamura, S., & Speck, J. S. (2006). Strain-induced polarization in wurtzite III-nitride semipolar layers. Journal of Applied Physics, 100(2) doi:10.1063/1.2218385 Rosales, D., Gil, B., Bretagnon, T., Guizal, B., Izyumskaya, N., Monavarian, M., . . . Morkoç, H. (2014). Recombination dynamics of excitons with low non-radiative component in semi-polar (10-11)-oriented GaN/AlGaN multiple quantum wells. Journal of Applied Physics, 116(9) doi:10.1063/1.4894513 Ryou, J. -., Yoder, P. D., Liu, J., Lochner, Z., Kim, H. S., Choi, S., . . . Dupuis, R. D. (2009). Control of quantum-confined stark effect in InGaN-based quantum wells. IEEE Journal on Selected Topics in Quantum Electronics, 15(4), 1080-1091. doi:10.1109/JSTQE.2009.2014170 Sawicka, M., Feduniewicz-Żmuda, A., Kryśko, M., Turski, H., Muziol, G., Siekacz, M., . . . Skierbiszewski, C. (2017). Indium incorporation in semipolar (202̅1) and nonpolar (101̅0) InGaN grown by plasma assisted molecular beam epitaxy. Journal of Crystal Growth, 459, 129-134. doi:10.1016/j.jcrysgro.2016.11.105 Schubert, E. F., & Kim, J. K. (2005). Solid-state light sources getting smart. Science, 308(5726), 1274-1278. doi:10.1126/science.1108712 Sharma, R., Pattison, P. M., Masui, H., Farrell, R. M., Baker, T. J., Haskell, B. A., . . . Nakamura, S. (2005). Demonstration of a semipolar (10 1- 3-) InGaN/GaN green light emitting diode. Applied Physics Letters, 87(23), 1-3. doi:10.1063/1.2139841 Song, K. -., Oh, D. -., & Lee, S. -. (2013). Optical and crystal improvements of semipolar (11-22) GaN/m-sapphire by in-situ thermal etching process. Current Applied Physics, 13(8), 1643-1646. doi:10.1016/j.cap.2013.05.020 Strittmatter, A., Northrup, J. E., Johnson, N. M., Kisin, M. V., Spiberg, P., El-Ghoroury, H., . . . Syrkin, A. (2011). Semi-polar nitride surfaces and heterostructures. Physica Status Solidi (B) Basic Research, 248(3), 561-573. doi:10.1002/pssb.201046422 Sun, Q., & Han, J. (2012). Heteroepitaxy of nonpolar and semipolar GaN doi:10.1007/978-3-642-23521-4_1 Retrieved from www.scopus.com Sun, Q., Ko, T. -., Yerino, C. D., Zhang, Y., Lee, I. -., Han, J., . . . Wang, S. -. (2009). Effect of controlled growth dynamics on the microstructure of nonpolar a-plane GaN revealed by X-ray diffraction. Japanese Journal of Applied Physics, 48(7 PART 1) doi:10.1143/JJAP.48.071002 Sun, Q., Leung, B., Yerino, C. D., Zhang, Y., & Han, J. (2009). Improving microstructural quality of semipolar (11 2-2) GaN on m -plane sapphire by a two-step growth process. Applied Physics Letters, 95(23) doi:10.1063/1.3269605 Tyagi, A., Wu, F., Young, E. C., Chakraborty, A., Ohta, H., Bhat, R., . . . Speck, J. S. (2009). Partial strain relaxation via misfit dislocation generation at heterointerfaces in (al,in)GaN epitaxial layers grown on semipolar (11 2̄2) GaN free standing substrates. Applied Physics Letters, 95(25) doi:10.1063/1.3275717 Vennéguès, P., Bougrioua, Z., & Guehne, T. (2007). Microstructural characterization of semipolar GaN templates and epitaxial-lateral-overgrown films deposited on m-plane sapphire by metalorganic vapor phase epitaxy. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 46(7 A), 4089-4095. doi:10.1143/JJAP.46.4089 Wang, Q., Zhu, C., Zhou, Y., Wang, X., Liu, B., Wang, X., . . . Ji, Z. (2015). Fabrication and photoluminescence of strong phase-separated InGaN based nanopillar LEDs. Superlattices and Microstructures, 88, 323-329. doi:10.1016/j.spmi.2015.09.028 Wernicke, T., Schade, L., Netzel, C., Rass, J., Hoffmann, V., Ploch, S., . . . Kneissl, M. (2012). Indium incorporation and emission wavelength of polar, nonpolar and semipolar InGaN quantum wells. Semiconductor Science and Technology, 27(2) doi:10.1088/0268-1242/27/2/024014 Williamson, G. K., & Hall, W. H. (1953). X-ray line broadening from filed aluminium and wolfram. Acta Metallurgica, 1(1), 22-31. doi:10.1016/0001-6160(53)90006-6 Woo, S., Lee, S., Choi, U., Lee, H., Kim, M., Han, J., & Nam, O. (2016). Novel: In situ self-separation of a 2 in. free-standing m -plane GaN wafer from an m -plane sapphire substrate by HCl chemical reaction etching in hydride vapor-phase epitaxy. CrystEngComm, 18(40), 7690-7695. doi:10.1039/c6ce00642f Wu, J., Walukiewicz, W., Yu, K. M., Ager, J. W., Haller, E. E., Lu, H., & Schaff, W. J. (2002). Small band gap bowing in In1-xGaxN alloys. Applied Physics Letters, 80(25), 4741-4743. doi:10.1063/1.1489481 Wu, K. M., Pan, Y., & Liu, C. (2009). InGaN nanorod arrays grown by molecular beam epitaxy: Growth mechanism structural and optical properties. Applied Surface Science, 255(13-14), 6705-6709. doi:10.1016/j.apsusc.2009.02.065 Wu, Z., Shen, X., Liu, C., Li, K., Shen, W., Kang, J., & Fang, Z. (2016). In situ asymmetric island sidewall growth of high-quality semipolar (1122) GaN on m -plane sapphire. CrystEngComm, 18(29), 5440-5447. doi:10.1039/c6ce00878j Xu, S. R., Zhang, J. C., Cao, Y. R., Zhou, X. W., Xue, J. S., Lin, Z. Y., . . . Hao, Y. (2012). Improvements in (112̄2) semipolar GaN crystal quality by graded superlattices. Thin Solid Films, 520(6), 1909-1912. doi:10.1016/j.tsf.2011.09.049 Yamada, H., Iso, K., Saito, M., Fujito, K., DenBaars, S. P., Speck, J. S., & Nakamura, S. (2007). Impact of substrate miscut on the characteristic of m-plane InGaN/GaN light emitting diodes. Japanese Journal of Applied Physics, Part 2: Letters, 46(45-49), L1117-L1119. doi:10.1143/JJAP.46.L1117 Yamamoto, S., Zhao, Y., Pan, C. -., Chung, R. B., Fujito, K., Sonoda, J., . . . Nakamura, S. (2010). High-efficiency single-quantum-well green and yellow-green light-emitting diodes on semipolar (20̄21) GaN substrates. Applied Physics Express, 3(12) doi:10.1143/APEX.3.122102 Yan, F., Gao, H., Zhang, H., Wang, G., Yang, F., Yan, J., . . . Li, J. (2007). Temperature dependence of the raman-active modes in the nonpolar a -plane GaN film. Journal of Applied Physics, 101(2) doi:10.1063/1.2424537 Yi, H. -., Song, K. -., Han, S. -., Lee, J. -., & Lee, S. -. (2013). Study of crystallographic tilt and surface morphology on epitaxial lateral overgrown semipolar (11-22) GaN. Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, 31(6) doi:10.1116/1.4827825 Zhong, H., Zhang, C., Song, W., Chen, K., Sheng, Y., Xu, G., & Liu, Z. (2020). Surface morphology of polar, semipolar and nonpolar freestanding GaN after chemical etching. Applied Surface Science, 511 doi:10.1016/j.apsusc.2020.145524 |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |