UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
Neodymium oxide doped tellurite-based glass has been widely documented for potential uses in optoelectronics, but graphene oxide (GO)-coated tellurite-based glass has rarely been reported. In this work, we compare two sets of glass series which were GO-coated and uncoated tellurite-based glass series denoted as ZBTNd-GO and ZBTNd, respectively. The two sets of glasses were fabricated via melt-quenched process. A set of glass was coated with GO using low-cost spray coating method. The structural and morphological properties of the glass samples were investigated to confirm the type of structure in glass and formation of graphene oxide on glass surface. The X-ray diffraction (XRD) pattern confirmed the amorphous structural arrangement in both sets of glass series. The morphological study proved the existence of GO layers on top of the ZBTNd-GO surface. The optical bandgap energy of ZBTNd-GO glass was found in the range of 3.253 eV?3.381 eV which was higher than ZBTNd glass. Meanwhile, the refractive index of ZBTNd-GO glass varies from 2.301 to 2.332 which was higher than ZBTNd glass due to the presence of functionalized oxygenated groups in GO structure. The oxide ion polarizability of ZBTNd-GO glass was found decreased due to the shift of optical band gap when coated with GO. This work offers a new form of glass that could be used as a new strategy to upgrade the current photonic materials. ? 2021 Elsevier B.V. |
References |
Alazoumi, S. H., Aziz, S. A., El-Mallawany, R., Aliyu, U. S., Kamari, H. M., Zaid, M. H. M. M., . . . Ushah, A. (2018). Optical properties of zinc lead tellurite glasses. Results in Physics, 9, 1371-1376. doi:10.1016/j.rinp.2018.04.041 Anita, K., & Singh, N. R. (2011). “Spectrochimica acta part A : Molecular and biomolecular spectroscopy absorption spectral analysis of 4f–4f transitions for the complexation of pr(III) and nd(III) with thiosemicarbazide in absence and presence of zn(II) in aqueous and organic solvents. Spectrochim.Acta Part A Mol.Biomol.Spectrosc., 81(1), 117-121. Retrieved from www.scopus.com Augustine, S., Singh, J., Srivastava, M., Sharma, M., Das, A., & Malhotra, B. D. (2017). Recent advances in carbon based nanosystems for cancer theranostics. Biomaterials Science, 5(5), 901-952. doi:10.1039/c7bm00008a Ayuni, J. N., Halimah, M. K., Talib, Z. A., Sidek, H. A. A., Daud, W. M., Zaidan, A. W., & Khamirul, A. M. (2011). Optical properties of ternary TeO2-B2O3-ZnO glass system. Paper presented at the IOP Conference Series: Materials Science and Engineering, , 17(1) doi:10.1088/1757-899X/17/1/012027 Retrieved from www.scopus.com Azlan, M. N., Halimah, M. K., Baki, S. O., & Daud, W. M. (2016). Effect of neodymium concentration on structural and optical properties of tellurite based glass system doi:10.4028/www.scientific.net/MSF.846.183 Retrieved from www.scopus.com Azlan, M. N., Halimah, M. K., Suriani, A. B., Azlina, Y., & El-Mallawany, R. (2019). Electronic polarizability and third-order nonlinearity of Nd3+ doped borotellurite glass for potential optical fiber. Materials Chemistry and Physics, 236 doi:10.1016/j.matchemphys.2019.121812 Bhatia, B., Meena, S. L., Parihar, V., & Poonia, M. (2015). Optical basicity and polarizability of Nd3+-doped bismuth borate glasses. New J.Glass Ceram., 5(3), 44-52. Retrieved from www.scopus.com Cai, X., Zhang, Q., Wang, S., Peng, J., Zhang, Y., Ma, H., . . . Zhai, M. (2014). Surfactant-assisted synthesis of reduced graphene oxide/polyaniline composites by gamma irradiation for supercapacitors. Journal of Materials Science, 49(16), 5667-5675. doi:10.1007/s10853-014-8286-0 Cheng, Q., Okamoto, Y., Tamura, N., Tsuji, M., Maruyama, S., & Matsuo, Y. (2017). Graphene-like-graphite as fast-chargeable and high-capacity anode materials for lithium ion batteries. Scientific Reports, 7(1) doi:10.1038/s41598-017-14504-8 Czerniak-Reczulska, M., Niedzielska, A., & Jędrzejczak, A. (2015). Graphene as a material for solar cells applications. Adv.Mater.Sci, 15(4), 67-81. Retrieved from www.scopus.com Dimiev, A. M., & Eigler, S. (2017). Graphene oxide: Fundamentals and applications // graphene oxide: Fundamentals and applications. Graphene Oxide: Fundamentals and Applications, Retrieved from www.scopus.com Dimitrov, V., & Komatsu, T. (2010). An interpretation of optical properties of oxides and oxide glasses in terms of the electronic ion polarizability and average single bond strength. J.Univ.Chem.Technol.Metall., 45(3), 219-250. Retrieved from www.scopus.com Dimitrov, V., & Komatsu, T. (2005). Classification of oxide glasses: A polarizability approach. Journal of Solid State Chemistry, 178(3), 831-846. doi:10.1016/j.jssc.2004.12.013 Dimitrov, V., & Komatsu, T. (1999). Electronic polarizability, optical basicity and non-linear optical properties of oxide glasses. Journal of Non-Crystalline Solids, 249(2-3), 160-179. doi:10.1016/S0022-3093(99)00317-8 Dimitrov, V., & Sakka, S. (1996). Electronic oxide polarizability and optical basicity of simple oxides. I. Journal of Applied Physics, 79(3), 1736-1740. doi:10.1063/1.360962 Dimitrov, V., & Sakka, S. (1996). Linear and nonlinear optical properties of simple oxides. II. Journal of Applied Physics, 79(3), 1741-1745. doi:10.1063/1.360963 Ding, L., Xu, C., Xia, Z., Xu, B., & Huang, J. (2017). Controlling polarization-dependent optical absorption of graphene through its thickness. Optik, 137, 59-64. doi:10.1016/j.ijleo.2017.02.048 Dousti, M. R., & Amjad, R. J. (2016). Enhanced 1.06 μm emission in Nd3+-doped lead-tellurite glasses doped with silver nanoparticles. Journal of Nanophotonics, 10(4) doi:10.1117/1.JNP.10.046010 Duffy, M. D., A, J., & Ingram. (1971). Inorganic oxyacids. Molten Salts, and Glasses, 1(2), 6448. Retrieved from www.scopus.com Eda, G., Mattevi, C., Yamaguchi, H., Kim, H., & Chhowalla, M. (2009). Insulator to semimetal transition in graphene oxide. Journal of Physical Chemistry C, 113(35), 15768-15771. doi:10.1021/jp9051402 Elbadawi, I. A. E., Abdallah, M. D., Elhai, R. A., & Ahmed, S. A. E. (2018). “The effect of oxidation number on refractive index based on. Int.J.Eng.Sci.Res.Technol., 7(1), 122-129. Retrieved from www.scopus.com Faznny, M. F., Halimah, M. K., & Azlan, M. N. (2016). Effect of lanthanum oxide on optical properties of zinc borotellurite glass system. J.Optoelectron.Biomed.Mater., 8(2), 49-59. Retrieved from www.scopus.com Gu, S. -., Hsieh, C. -., Lin, T. -., Chang, J. -., Li, J., & Gandomi, Y. A. (2018). Tuning oxidation level, electrical conductance and band gap structure on graphene sheets by a cyclic atomic layer reduction technique. Carbon, 137, 234-241. doi:10.1016/j.carbon.2018.05.024 Guo, C., Zhang, J., Xu, W., Liu, K., Yuan, X., Qin, S., & Zhu, Z. (2018). Graphene-based perfect absorption structures in the visible to terahertz band and their optoelectronics applications. Nanomaterials, 8(12) doi:10.3390/NANO8121033 Gupta, V., Sharma, N., Singh, U., Arif, M., & Singh, A. (2017). ( Revised manuscript) synthesis and characterization of graphene oxide. Retrieved from www.scopus.com Halimah, M. K., Faznny, M. F., Azlan, M. N., & Sidek, H. A. A. (2017). Optical basicity and electronic polarizability of zinc borotellurite glass doped La3+ ions. Results in Physics, 7, 581-589. doi:10.1016/j.rinp.2017.01.014 Hasan, M. T., Senger, B. J., Ryan, C., Culp, M., Gonzalez-Rodriguez, R., Coffer, J. L., & Naumov, A. V. (2017). Optical band gap alteration of graphene oxide via ozone treatment. Scientific Reports, 7(1) doi:10.1038/s41598-017-06107-0 Herzfeld, K. F. (1927). On atomic properties which make an element a metal. Physical Review, 29(5), 701-705. doi:10.1103/PhysRev.29.701 Hu, L., He, D., Chen, H., Wang, X., Meng, T., Wen, L., . . . Wang, B. (2016). Research and development of neodymium phosphate laser glass for high power laser application. Optical Materials, 62, 34-41. doi:10.1016/j.optmat.2016.09.038 Kalampounias, A. G., Nasikas, N. K., & Papatheodorou, G. N. (2011). Structural investigations of the xTeO2(1-x)GeO2 (x=0, 0.2, 0.4, 0.6, 0.8 and 1) tellurite glasses: A composition dependent raman spectroscopic study. Journal of Physics and Chemistry of Solids, 72(9), 1052-1056. doi:10.1016/j.jpcs.2011.05.016 Lai, Q., Zhu, S., Luo, X., Zou, M., & Huang, S. (2012). Ultraviolet-visible spectroscopy of graphene oxides. AIP Advances, 2(3) doi:10.1063/1.4747817 Lakshminarayana, G., Kityk, I. V., Mahdi, M. A., & Plucinski, K. J. (2018). Er/Pr-codoped borotellurite glasses as efficient laser operated nonlinear optical materials. Materials Letters, 214, 23-25. doi:10.1016/j.matlet.2017.11.100 Li, S. -., Tu, K. -., Lin, C. -., Chen, C. -., & Chhowalla, M. (2010). Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells. ACS Nano, 4(6), 3169-3174. doi:10.1021/nn100551j Li, Z., Gadipelli, S., Yang, Y., He, G., Guo, J., Li, J., . . . Guo, Z. (2019). Exceptional supercapacitor performance from optimized oxidation of graphene-oxide. Energy Storage Materials, 17, 12-21. doi:10.1016/j.ensm.2018.12.006 Moon, I. K., Kim, J. I., Lee, H., Hur, K., Kim, W. C., & Lee, H. (2013). 2D graphene oxide nanosheets as an adhesive over-coating layer for flexible transparent conductive electrodes. Scientific Reports, 3 doi:10.1038/srep01112 Mott, N. F., Davis, E. A., & Weiser, K. (1972). Electronic processes in non-crystalline materials. Phys.Today, 25(12) Retrieved from www.scopus.com Nanba, T. (2011). Characterization of glasses based on basicity. Journal of the Ceramic Society of Japan, 119(1394), 720-725. doi:10.2109/jcersj2.119.720 Narayan, R., & Kim, S. O. (2015). Surfactant mediated liquid phase exfoliation of graphene. Nano Convergence, 2(1) doi:10.1186/s40580-015-0050-x Nasser, K., Aseev, V., Ivanov, S., Ignatiev, A., & Nikonorov, N. (2019). Optical, spectroscopic properties and Judd–Ofelt analysis of Nd3+-doped photo-thermo-refractive glass. Journal of Luminescence, 213, 255-262. doi:10.1016/j.jlumin.2019.05.022 Nourbakhsh, A., Cantoro, M., Vosch, T., Pourtois, G., Clemente, F., Van Der Veen, M. H., . . . Sels, B. F. (2010). Bandgap opening in oxygen plasma-treated graphene. Nanotechnology, 21(43) doi:10.1088/0957-4484/21/43/435203 Paulchamy, B., Arthi, G., & Lignesh, B. D. (2015). A simple approach to stepwise synthesis of graphene oxide nanomaterial. J.Nanomed.Nanotechnol., 6(1), 1-4. Retrieved from www.scopus.com Purkait, T., Singh, G., Kumar, D., Singh, M., & Dey, R. S. (2018). High-performance flexible supercapacitors based on electrochemically tailored three-dimensional reduced graphene oxide networks. Scientific Reports, 8(1) doi:10.1038/s41598-017-18593-3 Qi, J., Xue, D., Ratajczak, H., & Ning, G. (2004). Electronic polarizability of the oxide ion and density of binary silicate, borate and phosphate oxide glasses. Physica B: Condensed Matter, 349(1-4), 265-269. doi:10.1016/j.physb.2004.03.307 Said Mahraz, Z. A., Sahar, M. R., Ghoshal, S. K., & Reza Dousti, M. (2013). Concentration dependent luminescence quenching of Er3+-doped zinc boro-tellurite glass. Journal of Luminescence, 144, 139-145. doi:10.1016/j.jlumin.2013.06.050 Saleem, H., Haneef, M., & Abbasi, H. Y. (2018). Synthesis route of reduced graphene oxide via thermal reduction of chemically exfoliated graphene oxide. Materials Chemistry and Physics, 204, 1-7. doi:10.1016/j.matchemphys.2017.10.020 Shang, J., Ma, L., Li, J., Ai, W., Yu, T., & Gurzadyan, G. G. (2012). The origin of fluorescence from graphene oxide. Sci.Rep., 2(792), 1-8. Retrieved from www.scopus.com Shin, D. S., Kim, H. G., Ahn, H. S., Jeong, H. Y., Kim, Y. -., Odkhuu, D., . . . Kim, B. H. (2017). Distribution of oxygen functional groups of graphene oxide obtained from low-temperature atomic layer deposition of titanium oxide. RSC Advances, 7(23), 13979-13984. doi:10.1039/c7ra00114b Shoaib, M., Chanthima, N., Rooh, G., Sangwaranatee, N., & Kaewkhao, J. (2019). Physical and luminescence study of Nd3+ ions doped phosphate glass for lasing applications. Paper presented at the Materials Today: Proceedings, , 17 1800-1808. doi:10.1016/j.matpr.2019.06.216 Retrieved from www.scopus.com Sidek, H. A. A., Chow, S. P., Talib, Z. A., & Halim, S. A. (2004). Formation and elastic behavior of lead-magnesium chlorophosphate glasses. Turkish Journal of Physics, 28(1), 65-71. Retrieved from www.scopus.com Smith, A. T., LaChance, A. M., Zeng, S., Liu, B., & Sun, L. (2019). Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Materials Science, 1(1), 31-47. doi:10.1016/j.nanoms.2019.02.004 Smith, R. J., Lotya, M., & Coleman, J. N. (2010). The importance of repulsive potential barriers for the dispersion of graphene using surfactants. New Journal of Physics, 12 doi:10.1088/1367-2630/12/12/125008 Stambouli, W., Elhouichet, H., & Ferid, M. (2012). Study of thermal, structural and optical properties of tellurite glass with different TiO 2 composition. Journal of Molecular Structure, 1028, 39-43. doi:10.1016/j.molstruc.2012.06.027 Talebian, E., & Talebian, M. (2013). A general review on the derivation of clausius-mossotti relation. Optik, 124(16), 2324-2326. doi:10.1016/j.ijleo.2012.06.090 Tang, S., Wu, W., Xie, X., Li, X., & Gu, J. (2017). Band gap opening of bilayer graphene by graphene oxide support doping. RSC Advances, 7(16), 9862-9871. doi:10.1039/c7ra01134b Wang, J., Mu, X., Sun, M., & Mu, T. (2019). Optoelectronic properties and applications of graphene-based hybrid nanomaterials and van der waals heterostructures. Applied Materials Today, 16, 1-20. doi:10.1016/j.apmt.2019.03.006 Yu, C., Yang, Z., Huang, A., Chai, Z., Qiu, J., Song, Z., & Zhou, D. (2017). Photoluminescence properties of tellurite glasses doped Dy3 + and Eu3 + for the UV and blue converted WLEDs. Journal of Non-Crystalline Solids, 457, 1-8. doi:10.1016/j.jnoncrysol.2016.11.025 Zhang, W. L., & Choi, H. J. (2015). Graphene/graphene oxide: A new material for electrorheological and magnetorheological applications. Journal of Intelligent Material Systems and Structures, 26(14), 1826-1835. doi:10.1177/1045389X15577655 Zhang, X. -., Shao, X., & Liu, S. (2012). Dual fluorescence of graphene oxide: A time-resolved study. Journal of Physical Chemistry A, 116(27), 7308-7313. doi:10.1021/jp301755b Zhao, X., Wang, X., Lin, H., & Wang, Z. (2007). Electronic polarizability and optical basicity of lanthanide oxides. Physica B: Condensed Matter, 392(1-2), 132-136. doi:10.1016/j.physb.2006.11.015 |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |