UPSI Digital Repository (UDRep)
Start | FAQ | About

QR Code Link :

Type :article
Subject :H Social Sciences
ISSN :2088-8708
Main Author :Abu Bakar Ibrahim
Additional Authors :Che Zalina Zulkifli
Shamsul Arrieya Ariffin
Title :High frequency of low noise amplifier architecture for WiMAX application: a review
Place of Production :Tanjung Malim
Publisher :Fakulti Seni, Komputeran Dan Industri Kreatif
Year of Publication :2021
Notes :International Journal of Electrical and Computer Engineering
Corporate Name :Universiti Pendidikan Sultan Idris
Web Link :Click to view web link
PDF Full Text :Login required to access this item.

Abstract : Universiti Pendidikan Sultan Idris
The low noise amplifier (LNA) circuit is exceptionally imperative as it promotes and initializes general execution performance and quality of the mobile communication system. LNA's design in radio frequency (R.F.) circuit requires the trade-off numerous imperative features' including gain, noise figure (N.F.), bandwidth, stability, sensitivity, power consumption, and complexity. Improvements to the LNA's overall performance should be made to fulfil the worldwide interoperability for microwave access (WiMAX) specifications' prerequisites. The development of front-end receiver, particularly the LNA, is genuinely pivotal for long-distance communications up to 50 km for a particular system with particular requirements. The LNA architecture has recently been designed to concentrate on a single transistor, cascode, or cascade constrained in gain, bandwidth, and noise figure. ? 2021 Institute of Advanced Engineering and Science. All rights reserved.

References

Amor, M. B., Loulou, M., Quintanel, S., & Pasquet, D. (2008). A wideband CMOS LNA design for WiMAX applications. Paper presented at the 4th European Conference on Circuits and Systems for Communications, ECCSC '08, 93-96. doi:10.1109/ECCSC.2008.4611653 Retrieved from www.scopus.com

Ayadi, D., Rodriguez, S., Loulou, M., & Ismail, M. (2008). System level design of radio frequency receiver for IEEE 802.16 standard. Paper presented at the Proceedings - 2008 3rd International Design and Test Workshop, IDT 2008, 82-86. doi:10.1109/IDT.2008.4802471 Retrieved from www.scopus.com

Behzad, A. R., Shi, Z. M., Anand, S. B., Lin, L., Carter, K. A., Kappes, M. S., . . . Rofougaran, A. (2003). A 5-GHz direct-conversion CMOS transceiver utilizing automatic frequency control for the IEEE 802.11a wireless LAN standard. IEEE Journal of Solid-State Circuits, 38(12), 2209-2220. doi:10.1109/JSSC.2003.819085

Chang, C. -., Chen, J. -., & Wang, Y. -. (2009). A fully integrated 5 GHz low-voltage LNA using forward body bias technology. IEEE Microwave and Wireless Components Letters, 19(3), 176-178. doi:10.1109/LMWC.2009.2013745

Chang, C. -., Chien, W. -., Su, C. -., Wang, Y. -., & Chen, J. -. (2010). Linearity improvement of cascode CMOS LNA using a diode connected NMOS transistor with a parallel RC circuit. Progress in Electromagnetics Research C, 17, 29-38. doi:10.2528/PIERC10082411

Chang, J. -., & Lin, Y. -. (2012). A low-power 3.2-9.7 GHz ultra-wideband low-noise amplifier with excellent stop-band rejection using 0.18-μm CMOS technology. Microwave and Optical Technology Letters, 54(5), 1253-1261. doi:10.1002/mop.26769

Chaudhari, J., Jani, R., & Oza, S. (2011). A 0.08-7 GHz low power low noise amplifier design using 0.18 μm CMOS technology. Int.J.Comp.Sci.Emerging Tech, 2(4), 513-519. Retrieved from www.scopus.com

Chen, H. -., Wang, T., Chiu, H. -., Kao, T. -., & Lu, S. -. (2009). 0.5-V 5.6-GHz CMOS receiver subsystem. IEEE Transactions on Microwave Theory and Techniques, 57(2), 329-335. doi:10.1109/TMTT.2008.2011165

Chen, H. -., Lin, Y. -., & Lu, S. -. (2010). Analysis and design of a 1.628-GHz compact wideband LNA in 90-nm CMOS using a π-match input network. IEEE Transactions on Microwave Theory and Techniques, 58(8), 2092-2104. doi:10.1109/TMTT.2010.2052406

Chirala, M. K., Guan, X., & Nguyen, C. (2008). Integrated multilayered on-chip inductors for compact CMOS RFICs and their use in a miniature distributed low-noise-amplifier design for ultra-wideband applications. IEEE Transactions on Microwave Theory and Techniques, 56(8), 1783-1789. doi:10.1109/TMTT.2008.926541

Choi, J., Seo, S. -., Moon, H., & Nam, I. (2011). A low noise and low power RF front-end for 5.8-GHz DSRC receiver in 0.13 μm CMOS. Journal of Semiconductor Technology and Science, 11(1), 59-64. doi:10.5573/JSTS.2011.11.1.059

Frenzel, L. E. (2008). Principles of electronic communication systems. Principles of Electronic Communication Systems, Retrieved from www.scopus.com

Garuda, C., & Ismail, M. (2006). A multi-band CMOS RF front-end for 4G WiMAX and WLAN applications. Paper presented at the Proceedings - IEEE International Symposium on Circuits and Systems, 3049-3052. Retrieved from www.scopus.com

Her, M. -., Hsu, H. -., Lin, H. -., Yuan, T. -., & Chan, S. -. (2009). Design and implementation of LNA for 2 to 6 GHz WiMAX system. Paper presented at the 2009 15th Asia-Pacific Conference on Communications, APCC 2009, 426-429. doi:10.1109/APCC.2009.5375600 Retrieved from www.scopus.com

Hou, D., Hong, W., & Wu, K. (2011). A 2.4 GHz and 5.8 GHz tunable low-noise amplifier using PIN diode. Paper presented at the 2011 China-Japan Joint Microwave Conference Proceedings, CJMW 2011, 423-425. Retrieved from www.scopus.com

Huang, D. -., Kao, S. -., & Pang, Y. -. (2007). A WiMAX receiver with variable bandwidth of 2.5 - 20 MHz and 93 dB dynamic gain range in 0.13-μm CMOS process. Paper presented at the Digest of Papers - IEEE Radio Frequency Integrated Circuits Symposium, 369-372. doi:10.1109/RFIC.2007.380903 Retrieved from www.scopus.com

IEEE Std. (2004). Air interface for fixed broadband wireless access systems. Air Interface for Fixed Broadband Wireless Access Systems, Retrieved from www.scopus.com

Kai, C., Inder, B., & Vijay, N. (2002). R.F.and Microwave Circuit and Component Design for Wireless Systems, Retrieved from www.scopus.com

Khosravi, H., Zandian, S., Bijari, A., & Kandalaft, N. (2019). A low power, high gain 2.4/5.2 GHz concurrent dual-band low noise amplifier. Paper presented at the 2019 IEEE 9th Annual Computing and Communication Workshop and Conference, CCWC 2019, 788-792. doi:10.1109/CCWC.2019.8666621 Retrieved from www.scopus.com

Lee, W. -., Lee, J., & Jeong, J. (2011). Design of variable gain low noise amplifier using feedback circuit with memory circuits for 5.2 GHz band. Analog Integrated Circuits and Signal Processing, 68(1), 43-50. doi:10.1007/s10470-011-9615-8

Lin, Y. -., Chen, C. -., Yang, H. -., Chen, C. -., Lee, J. -., Huang, G. -., & Lu, S. -. (2010). Analysis and design of a CMOS UWB LNA with dual-RLC-branch wideband input matching network. IEEE Transactions on Microwave Theory and Techniques, 58(2), 287-296. doi:10.1109/TMTT.2009.2037863

Liu, B., Zhou, J., & Mao, J. (2012). Design of a 0.5 v CMOS cascode low noise amplifier for multi-gigahertz applications. Journal of Semiconductors, 33(1) doi:10.1088/1674-4926/33/1/015006

Lorenzo, M. A. G., & De Leon, M. T. G. (2010). Comparison of LNA topologies for WiMAX applications in a standard 90-nm CMOS process. Paper presented at the UKSim2010 - UKSim 12th International Conference on Computer Modelling and Simulation, 642-647. doi:10.1109/UKSIM.2010.122 Retrieved from www.scopus.com

Madan, A., McPartlin, M. J., Masse, C., Vaillancourt, W., & Cressler, J. D. (2012). A 5 GHz 0.95 dB NF highly linear cascode floating-body LNA in 180 nm SOI CMOS technology. IEEE Microwave and Wireless Components Letters, 22(4), 200-202. doi:10.1109/LMWC.2012.2187882

Ning, G. -., Lei, Z. -., Zhang, L. -., Zou, R., & Shao, L. (2011). Design of concurrent low-noise amplifier for multi-band applications. Progress in Electromagnetics Research C, 22, 165-178. doi:10.2528/PIERC11052405

Norlaili. (2008). Development of Inductively Degenerated LNA for W-CDMA, Retrieved from www.scopus.com

Othman, A. R. (2010). High gain cascaded low noise amplifier using tmatching network. Journal of Telecommunication, Electronic and Computer Engineering, 2(1), 63-69. Retrieved from www.scopus.com

Othman, A. R., Ibrahim, A. B., Husain, M. N., Ahmad, M. T., & Senon, M. (2012). High gain, low noise cascode LNA using T-matching network for wireless applications. Paper presented at the 2012 IEEE Asia-Pacific Conference on Applied Electromagnetics, APACE 2012 - Proceedings, 383-387. doi:10.1109/APACE.2012.6457699 Retrieved from www.scopus.com

Park. (2009). A fully integrated CMOS wideband low noise amplifier (LNA) operating over 2.3-7 GHz is designed and fabricated using a 0.18 μm CMOS process. Published in IEICE Transactions, Retrieved from www.scopus.com

Park, J., Kim, S. -., Roh, Y. -., & Yoo, C. (2010). A direct-conversion CMOS RF receiver reconfigurable from 2 to 6 GHz. IEEE Transactions on Microwave Theory and Techniques, 58(9), 2326-2333. doi:10.1109/TMTT.2010.2057173

Perumana, B. G., Zhan, J. -. C., Taylor, S. S., Carlton, B. R., & Laskar, J. (2008). Resistive-feedback CMOS low-noise amplifiers for multiband applications. IEEE Transactions on Microwave Theory and Techniques, 56(5), 1218-1225. doi:10.1109/TMTT.2008.920181

Pourakbar, M., Langari, P., Dousti, M., Temcamani, F., Dracressoniere, B., & Gautier, J. L. (2008). A low voltage low noise amplifier (LNA), designed using 0.35μm SiGe BiCMOS process. 3rd International Conference on Information and Communication Technologies: From Theory to Applications, Retrieved from www.scopus.com

Shankar, S. U., & Dhas, M. D. K. (2015). Design and performance measure of 5.4 GHz CMOS low noise amplifier using current reuse technique in 0.18μm technology. Paper presented at the Procedia Computer Science, , 47(C) 135-143. doi:10.1016/j.procs.2015.03.192 Retrieved from www.scopus.com

Steer, M. (2010). Microwave and RF Design: A Systems Approach, Retrieved from www.scopus.com

Vitzilaios, G., Papananos, Y., & Theodoratos, G. (2008). A 1-V 5-GHz CMOS multiple magnetic feedback receiver front-end. IEEE Transactions on Microwave Theory and Techniques, 56(6), 1338-1348. doi:10.1109/TMTT.2008.921752

Wang, R. -., Chen, S. -., Huang, C. -., Liu, C. -., & Lin, Y. -. (2008). 2-6GHz current-reused LNA with transformer-type inductors. Paper presented at the Proceedings of 2008 Asia Pacific Microwave Conference, APMC 2008, doi:10.1109/APMC.2008.4957868 Retrieved from www.scopus.com

Weng, R. -., Liu, C. -., & Lin, P. -. (2010). A low-power full-band low-noise amplifier for ultra-wideband receivers. IEEE Transactions on Microwave Theory and Techniques, 58(8), 2077-2083. doi:10.1109/TMTT.2010.2052404

Wong, S. -., Kung, F., Maisurah, S., Osman, M. N. B., & Hui, S. J. (2009). Design of 3 to 5 GHz CMOS low noise amplifier for ultra-wideband (UWB) system. Progress in Electromagnetics Research C, 9, 25-34. doi:10.2528/PIERC09062202

Yeh, J. -., Chen, J. -., & Lee, C. -. (2003). The standard bearers. IEEE Potentials, 22(4), 16-22. doi:10.1109/MP.2003.1238688

Zhang, Y., Huang, F., Tang, X., & Zhao, D. (2012). A 0.7-9GHz CMOS broadband high-gain low noise amplifier for multi-band use. Paper presented at the 2012 International Conference on Microwave and Millimeter Wave Technology, ICMMT 2012 - Proceedings, , 1 359-362. doi:10.1109/ICMMT.2012.6229983 Retrieved from www.scopus.com


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries with this repository, kindly contact us at pustakasys@upsi.edu.my or Whatsapp +60163630263 (Office hours only)