UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
We demonstrated high-quality single crystalline a-plane undoped-gallium nitride grown on a nonpatterned r-plane sapphire substrate via metal?organic chemical vapor deposition. The effect of four different numbers of sandwiched strain-periodic AlN/GaN multilayers on the strain state, crystal quality, optical and electrical properties was investigated. Field emission scanning electron microscopy and atomic force microscopy showed that the surface morphology was improved upon insertion of 120 pairs of AlN/GaN thin layers with a root-mean-square roughness of 2.15�nm. On-axis X-ray ?-scan rocking curves showed enhanced crystalline quality: the full width at half maximum decreased from 1224 to 756 arcsec along the [0001] direction and from 2628 to 1360 arcsec along the [1?100] direction for a-GaN grown with 120 pairs of AlN/GaN compared to a-GaN without AlN/GaN pairs. Reciprocal space mapping showed that a-plane GaN with a high number of AlN/GaN pairs exhibits near-relaxation strain states. Room-temperature photoluminescence spectra showed that the sample with the highest number of AlN/GaN pairs exhibited the lowest-intensity yellow and blue luminescence bands, indicating a reduction in defects and dislocations. The a-plane InGaN/GaN LEDs with 120 pairs of SSPM-L AlN/GaN exhibited a significant increase (~ 250%) in light output power compared to that of LEDs without SSPM-L AlN/GaN pairs. ? 2021, The Author(s). |
References |
Chakraborty, A., Keller, S., Meier, C., Haskell, B. A., Keller, S., Waltereit, P., . . . Mishra, U. K. (2005). Properties of nonpolar a -plane InGaNGaN multiple quantum wells grown on lateral epitaxially overgrown a -plane GaN. Applied Physics Letters, 86(3), 1-3. doi:10.1063/1.1851007 Chen, D. (2020). Materials science in semiconductor processing temperature-dependent electrical and optical studies on nonpolar a-plane GaN thin films with various si-doping levels. Mater.Sci.Semicond.Process., 114, 12. Retrieved from www.scopus.com Darakchieva, V., Paskov, P. P., Paskova, T., Valcheva, E., Monemar, B., & Heuken, M. (2003). Lattice parameters of GaN layers grown on a-plane sapphire: Effect of in-plane strain anisotropy. Applied Physics Letters, 82(5), 703-705. doi:10.1063/1.1542931 Darakchieva, V., Paskova, T., Schubert, M., Arwin, H., Paskov, P. P., Monemar, B., . . . Nakamura, S. (2007). Anisotropic strain and phonon deformation potentials in GaN. Physical Review B - Condensed Matter and Materials Physics, 75(19) doi:10.1103/PhysRevB.75.195217 Hu, X. -., Xiao, F. -., Zhou, Q. -., Zheng, Y. -., & Liu, W. -. (2019). High-luminous efficacy green light-emitting diodes with InGaN/GaN quasi-superlattice interlayer and al-doped indium tin oxide film. Journal of Alloys and Compounds, 794, 137-143. doi:10.1016/j.jallcom.2019.04.241 Jiang, L., Marconcini, P., Hossian, M. S., Qiu, W., Evans, R., Macucci, M., & Skafidas, E. (2017). A tight binding and →k. →p study of monolayer stanene. Scientific Reports, 7(1) doi:10.1038/s41598-017-12281-y Jinno, D., Otsuki, S., Sugimori, S., Daicho, H., Iwaya, M., Takeuchi, T., . . . Akasaki, I. (2018). Characterization of nonpolar a-plane GaN epi-layers grown on high-density patterned r-plane sapphire substrates. Journal of Crystal Growth, 484, 50-55. doi:10.1016/j.jcrysgro.2017.12.036 Jiu, L., Gong, Y., & Wang, T. (2018). Overgrowth and strain GaN on patterned templates on sapphire. Sci.Rep., 8, 1. Retrieved from www.scopus.com Jo, M., & Hirayama, H. (2016). Growth of non-polar a-plane AlN on r-plane sapphire. Japanese Journal of Applied Physics, 55(5) doi:10.7567/JJAP.55.05FA02 Kim, D. H., Kim, S. J., Chae, D. J., Yang, J. W., Sim, J. I., Kim, T. G., & Hwang, S. M. (2011). Improved crystal quality and surface morphology of non polar α-plane GaN grown on γ-plane sapphire substrates. Journal of the Korean Physical Society, 58(41), 873-877. doi:10.3938/jkps.58.873 Kim, J. H., Hwang, S. -., Baik, K. H., & Park, J. H. (2014). Effect of basal-plane stacking faults on X-ray diffraction of non-polar (1120) a-plane GaN films grown on (1102) r-plane sapphire substrates. Journal of Semiconductor Technology and Science, 14(5), 557-565. doi:10.5573/JSTS.2014.14.5.557 Konar, A., Verma, A., Fang, T., Zhao, P., Jana, R., & Jena, D. (2012). Charge transport in non-polar and semi-polar III-V nitride heterostructures. Semiconductor Science and Technology, 27(2) doi:10.1088/0268-1242/27/2/024018 Kröger, R. (2008). Defects and interfacial structure of a-plane GaN on r-plane sapphire. Nitrides with nonpolar surfaces: Growth, properties, and devices (pp. 287-318) doi:10.1002/9783527623150.ch11 Retrieved from www.scopus.com Kuech, T. F., & Redwing, J. M. (1994). Carbon doping in metalorganic vapor phase epitaxy. Journal of Crystal Growth, 145(1-4), 382-389. doi:10.1016/0022-0248(94)91080-4 Laskar, M. R., Ganguli, T., Rahman, A. A., Mukherjee, A., Hatui, N., Gokhale, M. R., & Bhattacharya, A. (2011). Distorted wurtzite unit cells: Determination of lattice parameters of nonpolar a-plane AlGaN and estimation of solid phase al content. Journal of Applied Physics, 109(1) doi:10.1063/1.3525602 Lee, M., Vu, T. K. O., Lee, K. S., Kim, E. K., & Park, S. (2018). Electronic states of deep trap levels in a-plane GaN templates grown on r-plane sapphire by HVPE. Scientific Reports, 8(1) doi:10.1038/s41598-018-26290-y Li, P. P., Zhao, Y. B., Li, H. J., Che, J. M., Zhang, Z. -., Li, Z. C., . . . Wang, G. H. (2018). Very high external quantum efficiency and wall-plug efficiency 527 nm InGaN green LEDs by MOCVD. Optics Express, 26(25), 33108-33115. doi:10.1364/OE.26.033108 Li, Z. L., Lai, P. T., & Choi, H. W. (2010). Reliability study on green InGaN/GaN light emitting diodes. Paper presented at the Journal of Physics: Conference Series, , 209 doi:10.1088/1742-6596/209/1/012065 Retrieved from www.scopus.com Liang, F., Zhao, D., Jiang, D., Liu, Z., Zhu, J., Chen, P., . . . Du, G. (2018). Carbon-related defects as a source for the enhancement of yellow luminescence of unintentionally doped GaN. Nanomaterials, 8(9) doi:10.3390/nano8090744 Lotsari, A., Kehagias, T., Tsiakatouras, G., Tsagaraki, K., Katsikini, M., Arvanitidis, J., . . . Dimitrakopulos, G. P. (2014). Structural anisotropic properties of a -plane GaN epilayers grown on r -plane sapphire by molecular beam epitaxy. Journal of Applied Physics, 115(21) doi:10.1063/1.4880957 McLaurin, M. B., Hirai, A., Young, E., Wu, F., & Speck, J. S. (2008). Basal plane stacking-fault related anisotropy in X-ray rocking curve widths of m-plane GaN. Japanese Journal of Applied Physics, 47(7 PART 1), 5429-5431. doi:10.1143/JJAP.47.5429 Moram, M. A., Johnston, C. F., Hollander, J. L., Kappers, M. J., & Humphreys, C. J. (2009). Understanding x-ray diffraction of nonpolar gallium nitride films. Journal of Applied Physics, 105(11) doi:10.1063/1.3129307 Moram, M. A., Johnston, C. F., Kappers, M. J., & Humphreys, C. J. (2009). The effects of film surface roughness on x-ray diffraction of nonpolar gallium nitride films. Journal of Physics D: Applied Physics, 42(13) doi:10.1088/0022-3727/42/13/135407 Ni, X., Özgür, Ü., Fu, Y., Biyikli, N., Xie, J., Baski, A. A., . . . Liliental-Weber, Z. (2006). Defect reduction in (11 2-0) a -plane GaN by two-stage epitaxial lateral overgrowth. Applied Physics Letters, 89(26) doi:10.1063/1.2423328 Ni, Y. (2015). Effect of AlN/GaN superlattice buffer on the strain state in GaN-on-si (111) system. Jpn.J.Appl.Phys., 54, 10. Retrieved from www.scopus.com Oehler, F., Sutherland, D., Zhu, T., Emery, R., Badcock, T. J., Kappers, M. J., . . . Oliver, R. A. (2014). Evaluation of growth methods for the heteroepitaxy of non-polar (1120) GAN on sapphire by MOVPE. Journal of Crystal Growth, 408, 32-41. doi:10.1016/j.jcrysgro.2014.09.009 Okada, N., Kashihara, H., Sugimoto, K., Yamada, Y., & Tadatomo, K. (2015). Controlling potential barrier height by changing V-shaped pit size and the effect on optical and electrical properties for InGaN/GaN based light-emitting diodes. Journal of Applied Physics, 117(2) doi:10.1063/1.4905914 Omar, A. -., Shuhaimi Bin Abu Bakar, A., Makinudin, A. H. A., Khudus, M. I. M. A., Azman, A., Kamarundzaman, A., & Supangat, A. (2018). Effect of low NH3 flux towards high quality semi-polar (11-22) GaN on m-plane sapphire via MOCVD. Superlattices and Microstructures, 117, 207-214. doi:10.1016/j.spmi.2018.03.038 Reshchikov, M. A., & Morko̧, H. (2005). Luminescence properties of defects in GaN. Journal of Applied Physics, 97(6) doi:10.1063/1.1868059 Roder, C., Einfeldt, S., Figge, S., Paskova, T., Hommel, D., Paskov, P. P., . . . Nakamura, S. (2006). Stress and wafer bending of a -plane GaN layers on r -plane sapphire substrates. Journal of Applied Physics, 100(10) doi:10.1063/1.2386940 Santana, G., de Melo, O., Aguilar-Hernández, J., Mendoza-Pérez, R., Marel Monroy, B., Escamilla-Esquivel, A., . . . Contreras-Puente, G. (2013). Photoluminescence study of gallium nitride thin films obtained by infrared close space vapor transport. Materials, 6(3), 1050-1060. doi:10.3390/ma6031050 Sarzyński, M., Grzanka, E., Grzanka, S., Targowski, G., Czernecki, R., Reszka, A., . . . Leszczyński, M. (2019). Indium incorporation into InGaN quantum wells grown on GaN narrow stripes. Materials, 12(16) doi:10.3390/ma12162583 Seo, Y. G., Baik, K. H., Song, H., Son, J. -., Oh, K., & Hwang, S. -. (2011). Orange a-plane InGaN/GaN light-emitting diodes grown on r-plane sapphire substrates. Optics Express, 19(14), 12919-12924. doi:10.1364/OE.19.012919 Seo, Y. G., Kim, J., Hwang, S. -., Kim, J., Jang, S., Kim, H., & Baik, K. H. (2015). Lattice distortion analysis of nonpolar a-plane $$(11\bar 20)$$ GaN films by using a grazing-incidence X-ray diffraction technique. Journal of the Korean Physical Society, 66(4), 607-611. doi:10.3938/jkps.66.607 Shockley, W., & Read, W. T. (1952). Statistics of the recombinations of holes and electrons. Physical Review, 87(5), 835-842. doi:10.1103/PhysRev.87.835 Son, J. -., Honda, Y., & Amano, H. (2014). Growth of low-defect-density nonpolar a-plane GaN on r-plane sapphire using pulse NH3 interrupted etching. Optics Express, 22(3), 3585-3592. doi:10.1364/OE.22.003585 Song, H., Suh, J., Kyu Kim, E., Hyeon Baik, K., & Hwang, S. -. (2010). Growth of high quality a-plane GaN epi-layer on r-plane sapphire substrates with optimization of multi-buffer layer. Journal of Crystal Growth, 312(21), 3122-3126. doi:10.1016/j.jcrysgro.2010.08.004 Sugahara, T., Sato, H., Hao, M., Naoi, Y., Kurai, S., Tottori, S., . . . Sakai, S. (1998). Direct evidence that dislocations are non-radiative recombination centers in GaN. Japanese Journal of Applied Physics, 37(4A), L398-L400. doi:10.1143/jjap.37.l398 Sun, Z., Song, P., Nitta, S., Honda, Y., & Amano, H. (2017). A-plane GaN growth on (11-20) 4H-SiC substrate with an ultrathin interlayer. Journal of Crystal Growth, 468, 866-869. doi:10.1016/j.jcrysgro.2017.01.031 Tao, H., Xu, S., Mao, W., Fan, X., Du, J., Peng, R., . . . Hao, Y. (2019). Improved crystal quality of nonpolar a-plane GaN based on the nano pattern formed by the annealed thin ni layer. Superlattices and Microstructures, 130, 539-544. doi:10.1016/j.spmi.2019.05.020 Tung, L. T., Lin, L., Chang, Y., Huang, C., Hsiao, L., & Chiang, H. (2009). Photoluminescence and raman studies of GaN films grown by MOCVD. Journal of Physics: Conference Series, 187 doi:10.1088/1742-6596/187/1/012021 Wang, C., Jiang, Y., Die, J., Yan, S., Hu, X., Hu, W., . . . Chen, H. (2019). Improved crystal quality of non-polar: A -plane GaN epi-layers directly grown on optimized hole-array patterned r -sapphire substrates. CrystEngComm, 21(17), 2747-2753. doi:10.1039/c8ce01988f Xu, S., Hao, Y., Duan, H., Zhang, J., Zhang, J., Zhou, X., . . . Ni, J. (2009). Surface morphology of [112̄0] a-plane GaN growth by MOCVD on [11̄02] r-plane sapphire. Journal of Semiconductors, 30(4) doi:10.1088/1674-4926/30/4/043003 Yamada, H., Iso, K., Saito, M., Fujito, K., DenBaars, S. P., Speck, J. S., & Nakamura, S. (2007). Impact of substrate miscut on the characteristic of m-plane InGaN/GaN light emitting diodes. Japanese Journal of Applied Physics, Part 2: Letters, 46(45-49), L1117-L1119. doi:10.1143/JJAP.46.L1117 Yamamoto, S., Zhao, Y., Pan, C. -., Chung, R. B., Fujito, K., Sonoda, J., . . . Nakamura, S. (2010). High-efficiency single-quantum-well green and yellow-green light-emitting diodes on semipolar (20̄21) GaN substrates. Applied Physics Express, 3(12) doi:10.1143/APEX.3.122102 Yan, J., Wang, J., Liu, N., Liu, Z., Ruan, J., & Li, J. (2009). High quality AlGaN grown on a high temperature AIN template by MOCVD. Journal of Semiconductors, 30(10) doi:10.1088/1674-4926/30/10/103001 Yan, S., Die, J., Wang, C., Hu, X., Ma, Z., Deng, Z., . . . Chen, H. (2019). Improvement in the crystal quality of non-polar: A-plane GaN directly grown on an SiO2 stripe-patterned r-plane sapphire substrate. CrystEngComm, 21(34), 5124-5128. doi:10.1039/c9ce00995g Yonenaga, I., Ohno, Y., Taishi, T., Tokumoto, Y., Makino, H., Yao, T., . . . Edagawa, K. (2011). Optical properties of fresh dislocations in GaN. Journal of Crystal Growth, 318(1), 415-417. doi:10.1016/j.jcrysgro.2010.10.060 Yu, H., Ozturk, M., Demirel, P., Cakmak, H., & Ozbay, E. (2010). MOCVD growth and optical properties of non-polar (1 12 0) a-plane GaN on (1 01 2) r-plane sapphire substrate. Journal of Crystal Growth, 312(23), 3438-3442. doi:10.1016/j.jcrysgro.2010.08.052 Zhang, J., Tian, W., Wu, F., Wan, Q., Wang, Z., Zhang, J., . . . Li, X. (2014). The effects of substrate nitridation on the growth of nonpolar a-plane GaN on r-plane sapphire by metalorganic chemical vapor deposition. Applied Surface Science, 307, 525-532. doi:10.1016/j.apsusc.2014.04.069 Zhao, G., Wang, L., Yang, S., Li, H., Wei, H., Han, D., & Wang, Z. (2016). Anisotropic structural and optical properties of semi-polar (11-22) GaN grown on m-plane sapphire using double AlN buffer layers. Scientific Reports, 6 doi:10.1038/srep20787 Zhong, H., Zhang, C., Song, W., Chen, K., Sheng, Y., Xu, G., & Liu, Z. (2020). Surface morphology of polar, semipolar and nonpolar freestanding GaN after chemical etching. Applied Surface Science, 511 doi:10.1016/j.apsusc.2020.145524 |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |