UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :article
Subject :Q Science (General)
ISSN :2214-5818
Main Author :Tan, Mou Leong
Additional Authors :Shazlyn Milleana Shaharudin
Title :Improvement of the ESA CCI land cover maps for water balance analysis in tropical regions: a case study in the Muda River Basin, Malaysia
Place of Production :Tanjung Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2021
Notes :Journal of Hydrology: Regional Studies
Corporate Name :Universiti Pendidikan Sultan Idris
HTTP Link :Click to view web link

Abstract : Universiti Pendidikan Sultan Idris
Study region: The Muda River Basin (MRB), Malaysia. Study Focus: This study proposed a framework to improve the European Space Agency Climate Change Initiative Land Cover (ESA CCI LC) products through the integration with the Annual Oil Palm Dataset (AOPD). The improved land use land cover (LULC) maps were then used to produce five LULC scenarios as input maps into the Soil and Water Assessment Tool (SWAT) model for analyzing the impact of LULC changes on water balance in the MRB. New hydrological insights for the region: The improved LULC maps have good performance in representing rubber and oil palm, with an overall accuracy up to 81 %. In addition, SWAT simulated monthly streamflow well for the MRB, with the highest R2 and NSE values of 0.84 and 0.86, respectively. During the 2001?2016 period, the MRB experienced an expansion of oil palm from 7.10%?17.36 %, a reduction of rubber from 34.93 % to 26.38 % and a slight decrease in forest from 54.23%?52.80 %. The urban expansion scenario showed significant increment in surface runoff, while the reforestation scenario helped to reduce surface runoff, while increase lateral flow and groundwater. Oil palm expansion led to a higher reduction in lateral flow and groundwater than rubber trees due to the higher soil water absorption rate. The proposed framework can be duplicated and applied in other tropical basins, particularly in Indonesia and Malaysia. ? 2021 The Author(s)

References

Abbaspour, K. C., Vaghefi, S. A., & Srinivasan, R. (2017). A guideline for successful calibration and uncertainty analysis for soil and water assessment: A review of papers from the 2016 international SWAT conference. Water (Switzerland), 10(1) doi:10.3390/w10010006

Arnold, J. G., Srinivasan, R., Muttiah, R. S., & Williams, J. R. (1998). Large area hydrologic modeling and assessment part I: Model development. Journal of the American Water Resources Association, 34(1), 73-89. doi:10.1111/j.1752-1688.1998.tb05961.x

Bartholomé, E., & Belward, A. S. (2005). GLC2000: A new approach to global land cover mapping from earth observation data. International Journal of Remote Sensing, 26(9), 1959-1977. doi:10.1080/01431160412331291297

Bieger, K., Arnold, J. G., Rathjens, H., White, M. J., Bosch, D. D., Allen, P. M., . . . Srinivasan, R. (2017). Introduction to SWAT+, A completely restructured version of the soil and water assessment tool. Journal of the American Water Resources Association, 53(1), 115-130. doi:10.1111/1752-1688.12482

Bressiani, D. A., Gassman, P. W., Fernandes, J. G., Garbossa, L. H. P., Srinivasan, R., Bonumá, N. B., & Mendiondo, E. M. (2015). A review of soil and water assessment tool (SWAT) applications in brazil: Challenges and prospects. International Journal of Agricultural and Biological Engineering, 8(3), 1-27. doi:10.3965/j.ijabe.20150803.1765

Chen, Y., Niu, J., Sun, Y., Liu, Q., Li, S., Li, P., . . . Li, Q. (2020). Study on streamflow response to land use change over the upper reaches of zhanghe reservoir in the yangtze river basin. Geoscience Letters, 7(1) doi:10.1186/s40562-020-00155-7

Chirachawala, C., Shrestha, S., Babel, M. S., Virdis, S. G. P., & Wichakul, S. (2020). Evaluation of global land use/land cover products for hydrologic simulation in the upper yom river basin, thailand. Science of the Total Environment, 708 doi:10.1016/j.scitotenv.2019.135148

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1), 37-46. doi:10.1177/001316446002000104

Defourny, P., Bontemps, S., Lamarche, C., Brockmann, C., Boettcher, M., Wevers, J., & Kirches, G. (2017). Land cover CCI product user guide version 2.0. Land Cover CCI Product User Guide Version 2.0, Retrieved from www.scopus.com

DID. (2020). National water balance management system. Retrieved from www.scopus.com

DID. (2011). Review of the national water resources (2000-2050) and formulation of national water resources policy - volume 2 water resources givernance, final report. Retrieved from www.scopus.com

Ebrahim, N., Azwan, M. M. Z., Rowshon, M. K., & Nurulhuda, K. (2020). Evaluation of groundwater recharge based on climate change: A case study at Baung’s watershed, kota bharu, kelantan. [Penilaian aliran masuk air bawah tanah berdasarkan perubahan iklim: Suatu kajian kes di lembangan Baung, Kota Bharu, Kelantan] Sains Malaysiana, 49(11), 2649-2658. doi:10.17576/jsm-2020-4911-04

ESA. (2017). Land cover CCI product user guide version 2. Land Cover CCI Product User Guide Version 2, Retrieved from www.scopus.com

FAO. (2010). Global forest resource assessment 2010, FAO. Global Forest Resources Assessment 2010, Retrieved from www.scopus.com

FOMCA, F. M. C. A. (2009). A study report on groundwater resources development project in the district of batang padang, perak darul ridzuan: A reminder to malaysia. Retrieved from www.scopus.com

Foody, G. M. (2010). Assessing the accuracy of land cover change with imperfect ground reference data. Remote Sensing of Environment, 114(10), 2271-2285. doi:10.1016/j.rse.2010.05.003

Foody, G. M. (2015). Valuing map validation: The need for rigorous land cover map accuracy assessment in economic valuations of ecosystem services. Ecological Economics, 111, 23-28. doi:10.1016/j.ecolecon.2015.01.003

Gassman, P. W., Reyes, M. R., Green, C. H., & Arnold, J. G. (2007). The soil and water assessment tool: Historical development, applications, and future research directions. Transactions of the ASABE, 50(4), 1211-1250. Retrieved from www.scopus.com

Gassman, P. W., Sadeghi, A. M., & Srinivasan, R. (2014). Applications of the SWAT mode l special section: Overview and insights. Journal of Environmental Quality, 43(1), 1-8. doi:10.2134/jeq2013.11.0466

Gassman, P. W., & Yingkuan, W. (2015). IJABE SWAT special issue: Innovative modeling solutions for water resource problems. International Journal of Agricultural and Biological Engineering, 8(3) doi:10.3965/j.ijabe.20150803.1763

Githui, F., Mutua, F., & Bauwens, W. (2009). Estimating the impacts of land-cover change on runoff using the soil and water assessment tool (SWAT): Case study of nzoia catchment, kenya. Hydrological Sciences Journal, 54(5), 899-908. doi:10.1623/hysj.54.5.899

Hansen, M. C., Stehman, S. V., & Potapov, P. V. (2010). Quantification of global gross forest cover loss. Proceedings of the National Academy of Sciences of the United States of America, 107(19), 8650-8655. doi:10.1073/pnas.0912668107

Hardanto, A., Röll, A., Niu, F., Meijide, A., Hendrayanto, & Hölscher, D. (2017). Oil palm and rubber tree water use patterns: Effects of topography and flooding. Frontiers in Plant Science, 8 doi:10.3389/fpls.2017.00452

Jiang, L., Wu, H., Tao, J., Kimball, J. S., Alfieri, L., & Chen, X. (2020). Satellite-based evapotranspiration in hydrological model calibration. Remote Sensing, 12(3) doi:10.3390/rs12030428

Jourdan, C., Michaux-Ferrière, N., & Perbal, G. (2000). Root system architecture and gravitropism in the oil palm. Annals of Botany, 85(6), 861-868. doi:10.1006/anbo.2000.1148

Kondo, T., Sakai, N., Yazawa, T., & Shimizu, Y. (2021). Verifying the applicability of SWAT to simulate fecal contamination for watershed management of selangor river, malaysia. Science of the Total Environment, 774 doi:10.1016/j.scitotenv.2021.145075

Li, W., Ciais, P., MacBean, N., Peng, S., Defourny, P., & Bontemps, S. (2016). Major forest changes and land cover transitions based on plant functional types derived from the ESA CCI land cover product. International Journal of Applied Earth Observation and Geoinformation, 47, 30-39. doi:10.1016/j.jag.2015.12.006

Lyons, M. B., Keith, D. A., Phinn, S. R., Mason, T. J., & Elith, J. (2018). A comparison of resampling methods for remote sensing classification and accuracy assessment. Remote Sensing of Environment, 208, 145-153. doi:10.1016/j.rse.2018.02.026

MADA. (2020). Information of MADA's dams. Retrieved from www.scopus.com

Malingrèau, J. P., Tucker, C. J., & Laporte, N. (1989). AVHRR for monitoring global tropical deforestation. International Journal of Remote Sensing, 10(4-5), 855-867. doi:10.1080/01431168908903926

Mannschatz, T., Wolf, T., & Hülsmann, S. (2016). Nexus tools platform: Web-based comparison of modelling tools for analysis of water-soil-waste nexus. Environmental Modelling and Software, 76, 137-153. doi:10.1016/j.envsoft.2015.10.031

Moriasi, D. N., Gitau, M. W., Pai, N., & Daggupati, P. (2015). Hydrologic and water quality models: Performance measures and evaluation criteria. Transactions of the ASABE, 58(6), 1763-1785. doi:10.13031/trans.58.10715

Moriasi, D. N., Pai, N., Steiner, J. L., Gowda, P. H., Winchell, M., Rathjens, H., . . . Verser, J. A. (2019). SWAT-LUT: A desktop graphical user interface for updating land use in SWAT. Journal of the American Water Resources Association, 55(5), 1102-1115. doi:10.1111/1752-1688.12789

Mousivand, A., & Arsanjani, J. J. (2019). Insights on the historical and emerging global land cover changes: The case of ESA-CCI-LC datasets. Applied Geography, 106, 82-92. doi:10.1016/j.apgeog.2019.03.010

Nilawar, A. P., & Waikar, M. L. (2018). Use of SWAT to determine the effects of climate and land use changes on streamflow and sediment concentration in the purna river basin, india. Environmental Earth Sciences, 77(23) doi:10.1007/s12665-018-7975-4

Nowosad, J., Stepinski, T. F., & Netzel, P. (2019). Global assessment and mapping of changes in mesoscale landscapes: 1992–2015. International Journal of Applied Earth Observation and Geoinformation, 78, 332-340. doi:10.1016/j.jag.2018.09.013

Odusanya, A. E., Mehdi, B., Schürz, C., Oke, A. O., Awokola, O. S., Awomeso, J. A., . . . Schulz, K. (2019). Multi-site calibration and validation of SWAT with satellite-based evapotranspiration in a data-sparse catchment in southwestern nigeria. Hydrology and Earth System Sciences, 23(2), 1113-1144. doi:10.5194/hess-23-1113-2019

Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., & Wulder, M. A. (2014). Good practices for estimating area and assessing accuracy of land change. Remote Sensing of Environment, 148, 42-57. doi:10.1016/j.rse.2014.02.015

Pai, N., & Saraswat, D. (2011). SWAT2009-LUC: A tool to activate the land use change module in SWAT 2009. Transactions of the ASABE, 54(5), 1649-1658. Retrieved from www.scopus.com

Plummer, S., Lecomte, P., & Doherty, M. (2017). The ESA climate change initiative (CCI): A european contribution to the generation of the global climate observing system. Remote Sensing of Environment, 203, 2-8. doi:10.1016/j.rse.2017.07.014

Reinhart, V., Fonte, C. C., Hoffmann, P., Bechtel, B., Rechid, D., & Boehner, J. (2021). Comparison of ESA climate change initiative land cover to CORINE land cover over eastern europe and the baltic states from a regional climate modeling perspective. International Journal of Applied Earth Observation and Geoinformation, 94 doi:10.1016/j.jag.2020.102221

Santos, C. A. S., Almeida, C., Ramos, T. B., Rocha, F. A., Oliveira, R., & Neves, R. (2018). Using a hierarchical approach to calibrate SWAT and predict the semi-arid hydrologic regime of northeastern brazil. Water (Switzerland), 10(9) doi:10.3390/w10091137

Schilling, K. E., Jha, M. K., Zhang, Y. -., Gassman, P. W., & Wolter, C. F. (2008). Impact of land use and land cover change on the water balance of a large agricultural watershed: Historical effects and future directions. Water Resources Research, 45(7) doi:10.1029/2007WR006644

Stats, N. (2020). Population. Population, Retrieved from www.scopus.com

Stibig, H. -., Achard, F., Carboni, S., Raši, R., & Miettinen, J. (2014). Change in tropical forest cover of southeast asia from 1990 to 2010. Biogeosciences, 11(2), 247-258. doi:10.5194/bg-11-247-2014

Sulla-Menashe, D., & Friedl, M. A. (2018). User guide to collection 6 MODIS land cover (MCD12Q1 and MCD12C1) product. User Guide to Collection 6 MODIS Land Cover (MCD12Q1 and MCD12C1) Product, , 1-18. Retrieved from www.scopus.com

Tamm, O., Maasikamäe, S., Padari, A., & Tamm, T. (2018). Modelling the effects of land use and climate change on the water resources in the eastern baltic sea region using the SWAT model. Catena, 167, 78-89. doi:10.1016/j.catena.2018.04.029

Tan, M. L., Gassman, P. W., Srinivasan, R., Arnold, J. G., & Yang, X. (2019). A review of SWAT studies in southeast asia: Applications, challenges and future directions. Water (Switzerland), 11(5) doi:10.3390/w11050914

Tan, M. L., Gassman, P. W., Yang, X., & Haywood, J. (2020). A review of SWAT applications, performance and future needs for simulation of hydro-climatic extremes. Advances in Water Resources, 143 doi:10.1016/j.advwatres.2020.103662

Tan, M. L., Ibrahim, A. L., Yusop, Z., Duan, Z., & Ling, L. (2015). Impacts of land-use and climate variability on hydrological components in the johor river basin, malaysia. [Impacts de l’utilisation des sols et de la variabilité climatique sur les composantes hydrologiques dans le bassin du fleuve Johor, en Malaisie] Hydrological Sciences Journal, 60(5), 873-889. doi:10.1080/02626667.2014.967246

Tan, M. L., Samat, N., Chan, N. W., Lee, A. J., & Li, C. (2019). Analysis of precipitation and temperature extremes over the muda river basin, malaysia. Water (Switzerland), 11(2) doi:10.3390/w11020283

Tangang, F., Farzanmanesh, R., Mirzaei, A., Supari, Salimun, E., Jamaluddin, A. F., & Juneng, L. (2017). Characteristics of precipitation extremes in malaysia associated with el niño and la niña events. International Journal of Climatology, 37, 696-716. doi:10.1002/joc.5032

Tapia, J. F. D., Doliente, S. S., & Samsatli, S. (2021). How much land is available for sustainable palm oil? Land use Policy, 102 doi:10.1016/j.landusepol.2020.105187

Van Griensven, A., Ndomba, P., Yalew, S., & Kilonzo, F. (2012). Critical review of SWAT applications in the upper nile basin countries. Hydrology and Earth System Sciences, 16(9), 3371-3381. doi:10.5194/hess-16-3371-2012

Van Kalken, T. (2017). Malaysian national water balance system (NAWABS) for improved river basin management: Case study in the muda river basin. E-Proceedings of the 37th IAHR World Congress, August 13–18, 2017, Kuala Lumpur, Malaysia, Retrieved from www.scopus.com

Wulder, M. A., Franklin, S. E., White, J. C., Linke, J., & Magnussen, S. (2006). An accuracy assessment framework for large-area land cover classification products derived from medium-resolution satellite data. International Journal of Remote Sensing, 27(4), 663-683. doi:10.1080/01431160500185284

Xu, Y., Yu, L., Li, W., Ciais, P., Cheng, Y., & Gong, P. (2020). Annual oil palm plantation maps in malaysia and indonesia from 2001 to 2016. Earth System Science Data, 12(2), 847-867. doi:10.5194/essd-12-847-2020

Zhang, D., Tan, M. L., Dawood, S. R. S., Samat, N., Chang, C. K., Roy, R., . . . Mahamud, M. A. (2020). Comparison of ncep-cfsr and cmads for hydrological modelling using swat in the muda river basin, malaysia. Water (Switzerland), 12(11) doi:10.3390/w12113288

Zhang, H., Wang, B., Liu, D. L., Zhang, M., Leslie, L. M., & Yu, Q. (2020). Using an improved SWAT model to simulate hydrological responses to land use change: A case study of a catchment in tropical australia. Journal of Hydrology, 585 doi:10.1016/j.jhydrol.2020.124822


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.