UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
Carbon-based materials such as graphene oxide are known as attractive candidate to improve the current optoelectronic and laser devices. In this work, neodymium nanoparticles doped zinc-tellurite glass coated with graphene oxide (GO) denoted as ZBTNd (NPs)-GO was prepared via low-cost melt-quenching method and simple spray coating method. The structural properties of the glass system had been carried out by using X-ray diffraction (XRD) and confirmed its amorphous structural arrangement with non-existence of crystalline structure. The TeO3 and BO3 structural units were found dominant in tellurite glass network as determined by Fourier transforms infrared spectrometer (FTIR). High number of oxygen functional groups and stacked of graphene layers on the glass surface were revealed by field scanning electron microscopy (FESEM) and Raman spectroscopy. The optical band gap energy values were found to decrease in the range of 2.665?2.405�eV along with dopant concentration. In the meantime, the refractive index values were found more than n > 2.00 and fall in the range of 2.12 to 2.20. The electronic polarization was calculated by using Lorentz-Lorentz equation and found in the range of 6.516 to 7.211 � 3. Based on these results, the improvements on optical properties of tellurite glass have been made to be used in laser application. ? 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature. |
References |
Abdulbaset, A. A. A., Halimah, M. K., Chan, K. T., Nurisya, M. S., Salah, H. A., & Umarmuhammad, H. A. S. A. N. A. A. (2017). Effect of neodymium nanoparticles on elastic properties of zinc tellurite glass system. adv. mater. sci. Eng, 1-7(2017), 20. Retrieved from www.scopus.com Ahlawat, N., Sanghi, S., Agarwal, A., & Rani, S. (2009). Effect of Li2O on structure and optical properties of lithium bismosilicate glasses. Journal of Alloys and Compounds, 480(2), 516-520. doi:10.1016/j.jallcom.2009.01.116 Algradee, M. A., Sultan, M., Samir, O. M., & Alwany, A. E. B. (2017). Electronic polarizability, optical basicity and interaction parameter for Nd2O3 doped lithium–zinc–phosphate glasses. Applied Physics A: Materials Science and Processing, 123(8) doi:10.1007/s00339-017-1136-6 Azlan, M. N., Halimah, M. K., Baki, S. O., & Daud, W. M. (2016). Effect of neodymium concentration on structural and optical properties of tellurite based glass system doi:10.4028/www.scientific.net/MSF.846.183 Retrieved from www.scopus.com Azlan, M. N., Halimah, M. K., El-Mallawany, R., Faznny, M. F., & Eevon, C. (2017). Optical properties of zinc borotellurite glass system doped with erbium and erbium nanoparticles for photonic applications. Journal of Materials Science: Materials in Electronics, 28(5), 4318-4327. doi:10.1007/s10854-016-6056-2 Azlan, M. N., Halimah, M. K., Suriani, A. B., Azlina, Y., Umar, S. A., & El-Mallawany, R. (2019). Upconversion properties of erbium nanoparticles doped tellurite glasses for high efficient laser glass. Optics Communications, 448, 82-88. doi:10.1016/j.optcom.2019.05.022 Azlan, M. N., Halimah, M. K., Umar, S. A., Azlina, Y., El‐Mallawany, R., & Najmi, G. (2018). Linear and nonlinear optical efficiency of novel neodymium nanoparticles doped tellurite glass for advanced laser glass. Educ.JSMT, 5(2), 47-66. Retrieved from www.scopus.com Azlina, Y., Azlan, M. N., Halimah, M. K., Umar, S. A., El-Mallawany, R., & Najmi, G. (2020). Optical performance of neodymium nanoparticles doped tellurite glasses. Physica B: Condensed Matter, 577 doi:10.1016/j.physb.2019.411784 Azlina, Y., Azlan, M. N., Suriani, A. B., Halimah, M. K., & Umar, S. A. (2020). Optical properties of graphene oxide-coated tellurite glass for potential fiber optics. Journal of Non-Crystalline Solids, 536 doi:10.1016/j.jnoncrysol.2020.120000 Deepa, A. V., Murugasen, P., Muralimanohar, P., Sathyamoorthy, K., & Vinothkumar, P. (2019). A comparison on the structural and optical properties of different rare earth doped phosphate glasses. Optik, 181, 361-367. doi:10.1016/j.ijleo.2018.12.045 Faznny, M. F., Halimah, M. K., & Azlan, M. N. (2016). Effect of lanthanum oxide on optical properties of zinc borotellurite glass system. J.Optoelectron.Biomed.Mater., 8(2), 49-59. Retrieved from www.scopus.com Gayathri Pavani, P., Sadhana, K., & Chandra Mouli, V. (2011). Optical, physical and structural studies of boro-zinc tellurite glasses. Physica B: Condensed Matter, 406(6-7), 1242-1247. doi:10.1016/j.physb.2011.01.006 Hajer, S. S., Halimah, M. K., Azmi, Z., & Azlan, M. N. (2014). Optical properties of zinc-borotellurite doped samarium. Chalcogenide Letters, 11(11), 553-566. Retrieved from www.scopus.com Halimah, M. K. (2019). A.M. hamza., F.D.muhammad,K.T. chan, S.A. umar S.A., I,umaru I.G geidam. I.G (2019). effect of erbium nanoparticles on structural and spectroscopic properties of bio-silica borotellurite glasses containing silver oxide. mater. Chem.Phy, , 236. Retrieved from www.scopus.com Halimah, M. K., Ami Hazlin, M. N., & Muhammad, F. D. (2018). Experimental and theoretical approach on the optical properties of zinc borotellurite glass doped with dysprosium oxide. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 195, 128-135. doi:10.1016/j.saa.2017.12.054 Halimah, M. K., Awshah, A. A., Hamza, A. M., Chan, K. T., Umar, S. A., & Alazoumi, S. H. (2020). Effect of neodymium nanoparticles on optical properties of zinc tellurite glass system. Journal of Materials Science: Materials in Electronics, 31(5), 3785-3794. doi:10.1007/s10854-020-02907-9 Halimah, M. K., Daud, W. M., Sidek, H. A. A., Zaidan, A. W., & Zainal, A. S. (2010). Optical properties of ternary tellurite glasses. Materials Science- Poland, 28(1), 173-180. Retrieved from www.scopus.com Halimah, M. K., Nazrin, S. N., & Muhammad, F. D. (2019). Influence of silver oxide on structural, physical, elastic and optical properties of zinc tellurite glass system for optical application. Chalcogenide Letters, 16(8), 365-385. Retrieved from www.scopus.com Hamzah, H., Arifin, R., & Ghoshal, S. K. (2017). Reduction of hygroscopicity in zinc-calcium-phosphate glass via iron-oxide incorporation doi:10.4028/www.scientific.net/SSP.268.82 Retrieved from www.scopus.com Hasnimulyati, L., Halimah, M. K., Zakaria, A., Halim, S. A., Ishak, M., & Eevon, C. (2016). Structural and optical properties of tm2o3-doped zinc borotellurite glass system. Journal of Ovonic Research, 12(6), 291-299. Retrieved from www.scopus.com Heidari, B., Majdabadi, A., Naji, L., Sasani Ghamsari, M., Fakharan, Z., & Salmani, S. (2018). Thin reduced graphene oxide film with enhanced optical nonlinearity. Optik, 156, 104-111. doi:10.1016/j.ijleo.2017.10.176 Jalaukhan, A. H. A. (2020). Optical investigation of TiO2/Graphene oxide thinfilm prepared by spin coating technique. Paper presented at the IOP Conference Series: Materials Science and Engineering, , 871(1) doi:10.1088/1757-899X/871/1/012087 Retrieved from www.scopus.com Jamalaiah, B. C. (2018). GeO2 activated tellurite tungstate glass: A new candidate for solid state lasers and fiber devices. Journal of Non-Crystalline Solids, 502, 54-61. doi:10.1016/j.jnoncrysol.2018.03.032 Jha, A., Richards, B. D. O., Jose, G., Fernandez, T. T., Hill, C. J., Lousteau, J., & Joshi, P. (2012). Review on structural, thermal, optical and spectroscopic properties of tellurium oxide based glasses for fibre optic and waveguide applications. International Materials Reviews, 57(6), 357-382. doi:10.1179/1743280412Y.0000000005 Kesavulu, C. R., Kim, H. J., Lee, S. W., Kaewkhao, J., Wantana, N., Kaewnuam, E., . . . Kaewjaeng, S. (2017). Spectroscopic investigations of Nd3+doped gadolinium calcium silica borate glasses for the NIR emission at 1059 nm. Journal of Alloys and Compounds, 695, 590-598. doi:10.1016/j.jallcom.2016.11.002 Loh, K. P., Bao, Q., Eda, G., & Chhowalla, M. (2010). Graphene oxide as a chemically tunable platform for optical applications. Nature Chemistry, 2(12), 1015-1024. doi:10.1038/nchem.907 Mohandoss, M., & Nelleri, A. (2018). Optical properties of sunlight reduced graphene oxide using spectroscopic ellipsometry. Optical Materials, 86, 126-132. doi:10.1016/j.optmat.2018.09.035 Mott, N. F., & Davis, E. A. (1979). Electronic Processes in Non-Crystalline Materials, Retrieved from www.scopus.com Muhammad Noorazlan, A., Mohamed Kamari, H., Zulkefly, S. S., & Mohamad, D. W. (2013). Effect of erbium nanoparticles on optical properties of zinc borotellurite glass system. Journal of Nanomaterials, 2013 doi:10.1155/2013/940917 Neelima, G., Venkata Krishnaiah, K., Ravi, N., Suresh, K., Tyagarajan, K., & Jayachandra Prasad, T. (2019). Investigation of optical and spectroscopic properties of neodymium doped oxyfluoro-titania-phosphate glasses for laser applications. Scripta Materialia, 162, 246-250. doi:10.1016/j.scriptamat.2018.11.018 Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., . . . Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, 306(5696) Retrieved from www.scopus.com Nurhafizah, M. D., Suriani, A. B., Alfarisa, S., Mohamed, A., Isa, I. M., Kamari, A., . . . Mahmood, M. R. (2015). The synthesis of graphene oxide via electrochemical exfoliation method. Adv.Mater.Res., 1109, 55-59. Retrieved from www.scopus.com Rijal, S. (2017). Effect of host glass and semiconducting nanoarticles on the optical properties of rare earth ions in lead/bismuth telluroborate glasses (issue june). Western Illinois University, Retrieved from www.scopus.com Saddeek, Y. B., Shaaban, E. R., Moustafa, E. S., & Moustafa, H. M. (2008). Spectroscopic properties, electronic polarizability, and optical basicity of Bi2O3-Li2O-B2O3 glasses. Physica B: Condensed Matter, 403(13-16), 2399-2407. doi:10.1016/j.physb.2007.12.027 Simón, M., Benítez, A., Caballero, A., Morales, J., & Vargas, O. (2018). Untreated natural graphite as a graphene source for high-performance li-ion batteries. Batteries, 4(1) doi:10.3390/batteries4010013 Stambouli, W., Elhouichet, H., Gelloz, B., Férid, M., & Koshida, N. (2012). Energy transfer induced Eu3 photoluminescence enhancement in tellurite glass. Journal of Luminescence, 132(1), 205-209. doi:10.1016/j.jlumin.2011.08.018 Sujiono, E. H., Zurnansyah, Zabrian, D., Dahlan, M. Y., Amin, B. D., Samnur, & Agus, J. (2020). Graphene oxide based coconut shell waste: Synthesis by modified hummers method and characterization. Heliyon, 6(8) doi:10.1016/j.heliyon.2020.e04568 Šulc, J., & Jelínková, H. (2013). Solid-state lasers for medical applications. Lasers for medical applications: Diagnostics, therapy and surgery (pp. 127-176) doi:10.1533/9780857097545.2.127 Retrieved from www.scopus.com Suriani, A. B., Muqoyyanah, Mohamed, A., Othman, M. H. D., Mamat, M. H., Hashim, N., . . . Khalil, H. P. S. A. (2018). Reduced graphene oxide-multiwalled carbon nanotubes hybrid film with low pt loading as counter electrode for improved photovoltaic performance of dye-sensitised solar cells. Journal of Materials Science: Materials in Electronics, 29(13), 10723-10743. doi:10.1007/s10854-018-9139-4 Suriani, A. B., Nurhafizah, M. D., Mohamed, A., Mamat, M. H., Malek, M. F., Ahmad, M. K., . . . Huang, N. M. (2017). Enhanced photovoltaic performance using reduced graphene oxide assisted by triple-tail surfactant as an efficient and low-cost counter electrode for dye-sensitized solar cells. Optik, 139, 291-298. doi:10.1016/j.ijleo.2017.04.025 Tauc, J. (1970). Optical properties of non-crystalline solids. The Optical Properties of Solids, Retrieved from www.scopus.com Veeranna Gowda, V. C. (2015). Physical, thermal, infrared and optical properties of Nd3+doped lithium-lead-germanate glasses. Physica B: Condensed Matter, 456, 298-305. doi:10.1016/j.physb.2014.09.004 Yahya, N., Ab Rahim, A. R. B., & Abdullah, M. (2019). Physical and structural properties of neodymium doped lithium boro-tellurite glasses doi:10.4028/www.scientific.net/SSP.290.53 Retrieved from www.scopus.com Zhang, L., Xue, T., He, D., Guzik, M., & Boulon, G. (2015). Influence of stark splitting levels on the lasing performance of Yb3+ in phosphate and fluorophosphate glasses. Optics Express, 23(2), 1505-1511. doi:10.1364/OE.23.001505 |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |