UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
Rises in land surface temperature (LST) significantly impacted by land use/land cover (LULC) changes. The increase in LST massively impacted the urban biodiversity, ecosystem and population health. This study aims to estimate the changes in LULC classes and identify their impacts on LST in Dhaka city, Bangladesh using Landsat satellite images from 2000 to 2020. Based on the past estimated change maps of LULC and LST, the study finally predicted the future LULC and LST scenario for the year 2030. The support vector machine algorithm was applied to perform the LULC classification. Artificial neural network and cellular automata algorithms were used to predict the LST and LULC changes for 2030. Results suggested a significant reduction in vegetation cover (5%) and an increase in built-up area (14%) from 2000 to 2020. Due to this massive increase in built-up areas, the LST increment took place by 7.24 �C in the last two decades. The maximum temperature was recorded in built-up areas (34 �C), and water bodies (19 �C) exhibited minimum temperature. A strong positive correlation was found between LST and Normalized Difference Built-up Index (NDBI), where negative relation estimated between LST and Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI). The predicted results for 2030 also exhibit significant loss of urban green cover areas by 13% and rises in built-up areas by 21%. The maximum LST will likely be increased by 9.29 �C in the predicted year. For ensuring sustainable urban development and minimizing the urban heat island effects, this study will play a significant role by providing effective guidelines for urban planners, policymakers and respective authorities of Dhaka city. ? 2021 |
References |
Abdullah-Al-Faisal, Abdulla - Al Kafy, Foyezur Rahman, A. N. M., Rakib, A. A., Akter, K. S., Raikwar, V., . . . Kona, M. A. (2021). Assessment and prediction of seasonal land surface temperature change using multi-temporal landsat images and their impacts on agricultural yields in rajshahi, bangladesh. Environmental Challenges, 4 doi:10.1016/j.envc.2021.100147 Abutaleb, K., Ngie, A., Darwish, A., Ahmed, M., Arafat, S., & Ahmed, F. (2015). Assessment of urban heat island using remotely sensed imagery over greater cairo, egypt. Advances in Remote Sensing, 4(4), 35-47. Retrieved from www.scopus.com Al Rakib, A., Akter, K. S., Rahman, M. N., Arpi, S., & Kafy, A. -. (2020). Analyzing the pattern of land use land cover change and its impact on land surface temperature: A remote sensing approach in mymensingh, bangladesh. 1st Int.Student Res.Conf., Retrieved from www.scopus.com Al Rakib, A., Ayan, S. M., Orthy, T. T., Sarker, O., Intisar, L., & Arnob, M. A. (2020). Depth-analysis of urban resident-satisfaction level of mirpur, dhaka, bangladesh: A participatory approach. Proceedings of the 1st International Student Research Conference, Retrieved from www.scopus.com Al Rakib, A., Rahman, M. N., Arpi, S., Ratu, J. F., Afroz, F., Hossain, N., & Zubayer, M. S. (2020). An assessment on the housing satisfaction of padma residential area, rajshahi. Proceedings of the 1st International Student Research Conference, Retrieved from www.scopus.com Alamgir, M., Khan, N., Shahid, S., Yaseen, Z. M., Dewan, A., Hassan, Q., & Rasheed, B. (2020). Evaluating severity–area–frequency (SAF) of seasonal droughts in bangladesh under climate change scenarios. Stochastic Environmental Research and Risk Assessment, 34(2), 447-464. doi:10.1007/s00477-020-01768-2 Almazroui, M., Islam, M. N., & Jones, P. D. (2013). Urbanization effects on the air temperature rise in saudi arabia. Climatic Change, 120(1-2), 109-122. doi:10.1007/s10584-013-0796-2 Arekhi, M., Goksel, C., Sanli, F. B., & Senel, G. (2019). Comparative evaluation of the spectral and spatial consistency of sentinel-2 and landsat-8 OLI data for igneada longos forest. ISPRS International Journal of Geo-Information, 8(2) doi:10.3390/ijgi8020056 Balzter, H. (2000). Markov chain models for vegetation dynamics. Ecological Modelling, 126(2-3), 139-154. doi:10.1016/S0304-3800(00)00262-3 Chakroborty, S., Rakib, A., Kafy, A., & Al, A. (2020). Monitoring water quality based on community perception in the northwest region of bangladesh. 1st International Student Research Conference - 2020, Dhaka, Bangladesh, Retrieved from www.scopus.com Chen, X. -., Zhao, H. -., Li, P. -., & Yin, Z. -. (2006). Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sensing of Environment, 104(2), 133-146. doi:10.1016/j.rse.2005.11.016 Choudhury, D., Das, K., & Das, A. (2019). Assessment of land use land cover changes and its impact on variations of land surface temperature in asansol-durgapur development region. Egyptian Journal of Remote Sensing and Space Science, 22(2), 203-218. doi:10.1016/j.ejrs.2018.05.004 Dar, I., Qadir, J., & Shukla, A. (2019). , 1-19. Retrieved from www.scopus.com Das, N., Mondal, P., Sutradhar, S., & Ghosh, R. (2020). Assessment of variation of land use/land cover and its impact on land surface temperature of asansol subdivision. J.Remote Sens.Sp.Sci., Retrieved from www.scopus.com Dey, N. N., Al Rakib, A., Kafy, A. -., & Raikwar, V. (2021). Geospatial modelling of changes in land use/land cover dynamics using multi-layer perception markov chain model in rajshahi city, bangladesh. Environmental Challenges, 4 doi:10.1016/j.envc.2021.100148 Dhamge, N. R., Atmapoojya, S., & Kadu, M. S. (2012). Genetic algorithm driven ANN model for runoff estimation. Procedia Technology, 6, 501-508. Retrieved from www.scopus.com Ding, H., & Shi, W. (2013). Land-use/land-cover change and its influence on surface temperature: A case study in beijing city. International Journal of Remote Sensing, 34(15), 5503-5517. doi:10.1080/01431161.2013.792966 FAO, F. A. (2012). Retrieved from www.scopus.com Fu, P., & Weng, Q. (2018). Responses of urban heat island in atlanta to different land-use scenarios. Theoretical and Applied Climatology, 133(1-2), 123-135. doi:10.1007/s00704-017-2160-3 Gascon, M., Cirach, M., Martínez, D., Dadvand, P., Valentín, A., Plasència, A., & Nieuwenhuijsen, M. J. (2016). Normalized difference vegetation index (NDVI) as a marker of surrounding greenness in epidemiological studies: The case of barcelona city. Urban Forestry and Urban Greening, 19, 88-94. doi:10.1016/j.ufug.2016.07.001 Hasanlou, M., & Mostofi, N. (2015). Investigating urban heat island estimation and relation between various land cover indices in tehran city using landsat 8 imagery. Proceedings of the 1st International Electronic Conference on Remote Sensing, , 1-11. Retrieved from www.scopus.com Hossain, M. S., Arshad, M., Qian, L., Zhao, M., Mehmood, Y., & Kächele, H. (2019). Economic impact of climate change on crop farming in bangladesh: An application of ricardian method. Ecological Economics, 164 doi:10.1016/j.ecolecon.2019.106354 Kafy, A. -., Abdullah-Al-Faisal, Raikwar, V., Rakib, A. A., Kona, M. A., & Ferdousi, J. (2021). Geospatial approach for developing an integrated water resource management plan in rajshahi, bangladesh. Environmental Challenges, 4 doi:10.1016/j.envc.2021.100139 Kafy, A. -., Faisal, A. -., Rahman, M. S., Islam, M., Al Rakib, A., Islam, M. A., . . . Sattar, G. S. (2021). Prediction of seasonal urban thermal field variance index using machine learning algorithms in cumilla, bangladesh. Sustainable Cities and Society, 64 doi:10.1016/j.scs.2020.102542 Kafy, A. -., Faisal, A. -., Shuvo, R. M., Naim, M. N. H., Sikdar, M. S., Chowdhury, R. R., . . . Kona, M. A. (2021). Remote sensing approach to simulate the land use/land cover and seasonal land surface temperature change using machine learning algorithms in a fastest-growing megacity of bangladesh. Remote Sensing Applications: Society and Environment, 21 doi:10.1016/j.rsase.2020.100463 Kafy, A. A., Faisal, A. A., Sikdar, S., Hasan, M., & Ahmmed, R. (2019). Using geographic information system and remote sensing techniques in environmental management: A case study in cumilla city corporation. Proceedings of the 1st International Conference on Urban and Regional Planning (ICURP-2019), Bangladesh, Retrieved from www.scopus.com Kafy, A. A., Islam, M., Sikdar, M. S., Ashrafi, T. J., Faisal, A. A., Islam, M. A., . . . Ali, M. Y. (2021). Remote sensing-based approach to identify the influence of land use/land cover change on the urban thermal environment: A case study in chattogram city, bangladesh. Re-Envisioning Remote Sensing Applications: Perspective from Developing Countries, , 216-237. Retrieved from www.scopus.com Kafy, A. -., Naim, M. N. H., Khan, M. H. H., Islam, M. A., Al Rakib, A., Faisal, A. -., & Sarker, M. H. S. (2021). Prediction of urban expansion and identifying its impacts on the degradation of agricultural land: A machine learning-based remote-sensing approach in rajshahi, bangladesh. Re-Envisioning Remote Sensing Applications: Perspective from Developing Countries, , 85-106. Retrieved from www.scopus.com Kafy, A. -., Naim, M. N. H., Subramanyam, G., Faisal, A. -., Ahmed, N. U., Rakib, A. A., . . . Sattar, G. S. (2021). Cellular automata approach in dynamic modelling of land cover changes using RapidEye images in dhaka, bangladesh. Environmental Challenges, 4 doi:10.1016/j.envc.2021.100084 Kafy, A. -., Rahman, M. N., Al Rakib, A., Arpi, S., & Faisal, A. -. (2019). Assessing satisfaction level of urban residential area: A comparative study based on resident's perception in rajshahi city, bangladesh. 1st International Conference on Urban and Regional Planning, Bangladesh, Bangladesh Institute of Planners, Dhaka, Bangladesh, , 225-235. Retrieved from www.scopus.com Kafy, A. -., Rahman, M. S., Faisal, A. -., Hasan, M. M., & Islam, M. (2020). Modelling future land use land cover changes and their impacts on land surface temperatures in rajshahi, bangladesh. Remote Sensing Applications: Society and Environment, 18 doi:10.1016/j.rsase.2020.100314 Kumar, D., Pfeiffer, M., Gaillard, C., Langan, L., & Scheiter, S. (2020). Climate change and elevated CO2 favor forest over savanna under different future scenarios in south asia. Biogeosci.Discuss, , 1-34. Retrieved from www.scopus.com Kumar, K. S., Bhaskar, P. U., & Padmakumari, K. (2012). Estimation of land surface temperature to study urban heat island effect using landsat ETM 1 image. International Journal of Engineering Science and Technology, 4(2), 771-778. Retrieved from www.scopus.com Latham, J. S., He, C. C., Alinovi, L., Di Gregorio, A., & Kalensky, Z. (2002). EAO methodologies for land cover classification and mapping. Linking People, Place, and Policy, , 283-316. Retrieved from www.scopus.com Luck, M., & Wu, J. (2002). A gradient analysis of urban landscape pattern: A case study from the phoenix metropolitan region, arizona, USA. Landscape Ecology, 17(4), 327-339. doi:10.1023/A:1020512723753 Mansouri, I., Ozbakkaloglu, T., Kisi, O., & Xie, T. (2016). Predicting behavior of FRP-confined concrete using neuro fuzzy, neural network, multivariate adaptive regression splines and M5 model tree techniques. Materials and Structures/Materiaux Et Constructions, 49(10), 4319-4334. doi:10.1617/s11527-015-0790-4 McFeeters, S. K. (1996). The use of the normalized difference water index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425-1432. doi:10.1080/01431169608948714 Ménard, A., & Marceau, D. J. (2005). Exploration of spatial scale sensitivity in geographic cellular automata. Environment and Planning B: Planning and Design, 32(5), 693-714. doi:10.1068/b31163 Mfondoum, A. H. N., Etouna, J., Nongsi, B. K., Moto, F. A. M., & Deussieu, F. N. (2016). Assessment of land degradation status and its impact in arid and semi-arid areas by correlating spectral and principal component analysis neo-bands. International Journal of Advanced Remote Sensing and GIS, 5(2), 1539-1560. Retrieved from www.scopus.com Mishra, K., & Prasad, P. R. C. (2015). Automatic extraction of water bodies from landsat imagery using perceptron model. J.Comput.Environ.Sci., 2015, 1-9. Retrieved from www.scopus.com Mushore, T. D., Odindi, J., Dube, T., & Mutanga, O. (2017). Prediction of future urban surface temperatures using medium resolution satellite data in harare metropolitan city, zimbabwe. Building and Environment, 122, 397-410. doi:10.1016/j.buildenv.2017.06.033 Naim, M. N. H., & Kafy, A. -. (2021). Assessment of urban thermal field variance index and defining the relationship between land cover and surface temperature in chattogram city: A remote sensing and statistical approach. Environmental Challenges, 4 doi:10.1016/j.envc.2021.100107 Neteler, M. (2010). Estimating daily land surface temperatures in mountainous environments by reconstructed MODIS LST data. Remote Sensing, 2(1), 333-351. doi:10.3390/rs1020333 Pu, R., Gong, P., Michishita, R., & Sasagawa, T. (2006). Assessment of multi-resolution and multi-sensor data for urban surface temperature retrieval. Remote Sensing of Environment, 104(2), 211-225. doi:10.1016/j.rse.2005.09.022 Rahman, M. S., Mohiuddin, H., Kafy, A. -., Sheel, P. K., & Di, L. (2018). Classification of cities in bangladesh based on remote sensing derived spatial characteristics. J.Urban Manag., Retrieved from www.scopus.com Ramachandra, T. V., Aithal, B. H., & Sanna, D. (2012). Land surface temperature analysis in an urbanising landscape through multi-resolution data. Research & Reviews: Journal of Space Science & Technology, 1(1), 1-10. Retrieved from www.scopus.com Rousta, I., Sarif, M. O., Gupta, R. D., Olafsson, H., Ranagalage, M., Murayama, Y., . . . Mushore, T. D. (2018). Spatiotemporal analysis of land use/land cover and its effects on surface urban heat island using landsat data: A case study of metropolitan city tehran (1988-2018). Sustainability (Switzerland), 10(12) doi:10.3390/su10124433 Santé, I., García, A. M., Miranda, D., & Crecente, R. (2010). Cellular automata models for the simulation of real-world urban processes: A review and analysis. Landscape and Urban Planning, 96(2), 108-122. doi:10.1016/j.landurbplan.2010.03.001 Shakhawat Hossain, M., Arshad, M., Qian, L., Kächele, H., Khan, I., Din Il Islam, M., & Golam Mahboob, M. (2020). Climate change impacts on farmland value in bangladesh. Ecological Indicators, 112 doi:10.1016/j.ecolind.2020.106181 Shatnawi, N., & Abu Qdais, H. (2019). Mapping urban land surface temperature using remote sensing techniques and artificial neural network modelling. International Journal of Remote Sensing, 40(10), 3968-3983. doi:10.1080/01431161.2018.1557792 Siddique, M. A., Dongyun, L., Li, P., Rasool, U., Khan, T. U., Farooqi, T. J. A., . . . Rasool, M. A. (2020). Assessment and simulation of land use and land cover change impacts on the land surface temperature of chaoyang district in beijing, china. PeerJ, 2020(3) doi:10.7717/peerj.9115 Ullah, S., Ahmad, K., Sajjad, R. U., Abbasi, A. M., Nazeer, A., & Tahir, A. A. (2019). Analysis and simulation of land cover changes and their impacts on land surface temperature in a lower himalayan region. Journal of Environmental Management, 245, 348-357. doi:10.1016/j.jenvman.2019.05.063 van Gerven, M., & Bohte, S. (2017). Editorial: Artificial neural networks as models of neural information processing. Frontiers in Computational Neuroscience, 11 doi:10.3389/fncom.2017.00114 Weng, Q. (2001). A remote sensing?GIS evaluation of urban expansion and its impact on surface temperature in the zhujiang delta, china. International Journal of Remote Sensing, 22(10), 1999-2014. doi:10.1080/713860788 Yankovich, K. S., Yankovich, E. P., & Baranovskiy, N. V. (2019). Classification of vegetation to estimate forest fire danger using landsat 8 images: Case study. Mathematical Problems in Engineering, 2019 doi:10.1155/2019/6296417 Yengoh, G. T., Dent, D., Olsson, L., Tengberg, A. E., & Tucker, C. J. (2015). Use of the normalized difference vegetation index (NDVI) to assess land degradation at multiple scales. The use of the Normalized Difference Vegetation Index (NDVI) to Assess Land Degradation at Multiple Scales: Current Status, Future Trends, and Practical Considerations, Retrieved from www.scopus.com Zenil, H. (2010). Compression-based investigation of the dynamical properties of cellular automata and other systems. Complex Systems, 19(1), 1-28. Retrieved from www.scopus.com Zhou, J., Chen, Y., Zhang, X., & Zhan, W. (2013). Modelling the diurnal variations of urban heat islands with multi-source satellite data. International Journal of Remote Sensing, 34(21), 7568-7588. doi:10.1080/01431161.2013.821576 |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |