UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :article
Subject :S Agriculture (General)
ISSN :2667-0100
Main Author :Kafy, Abdulla Al
Additional Authors :Zullyadini A. Rahaman
Title :Modeling the relationship between land use/land cover and land surface temperature in Dhaka, Bangladesh using CA-ANN algorithm
Place of Production :Tanjung Malim
Publisher :Fakulti Sains Kemanusiaan
Year of Publication :2021
Notes :Environmental Challenges
Corporate Name :Universiti Pendidikan Sultan Idris
HTTP Link :Click to view web link

Abstract : Universiti Pendidikan Sultan Idris
Rises in land surface temperature (LST) significantly impacted by land use/land cover (LULC) changes. The increase in LST massively impacted the urban biodiversity, ecosystem and population health. This study aims to estimate the changes in LULC classes and identify their impacts on LST in Dhaka city, Bangladesh using Landsat satellite images from 2000 to 2020. Based on the past estimated change maps of LULC and LST, the study finally predicted the future LULC and LST scenario for the year 2030. The support vector machine algorithm was applied to perform the LULC classification. Artificial neural network and cellular automata algorithms were used to predict the LST and LULC changes for 2030. Results suggested a significant reduction in vegetation cover (5%) and an increase in built-up area (14%) from 2000 to 2020. Due to this massive increase in built-up areas, the LST increment took place by 7.24 �C in the last two decades. The maximum temperature was recorded in built-up areas (34 �C), and water bodies (19 �C) exhibited minimum temperature. A strong positive correlation was found between LST and Normalized Difference Built-up Index (NDBI), where negative relation estimated between LST and Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI). The predicted results for 2030 also exhibit significant loss of urban green cover areas by 13% and rises in built-up areas by 21%. The maximum LST will likely be increased by 9.29 �C in the predicted year. For ensuring sustainable urban development and minimizing the urban heat island effects, this study will play a significant role by providing effective guidelines for urban planners, policymakers and respective authorities of Dhaka city. ? 2021

References

Abdullah-Al-Faisal, Abdulla - Al Kafy, Foyezur Rahman, A. N. M., Rakib, A. A., Akter, K. S., Raikwar, V., . . . Kona, M. A. (2021). Assessment and prediction of seasonal land surface temperature change using multi-temporal landsat images and their impacts on agricultural yields in rajshahi, bangladesh. Environmental Challenges, 4 doi:10.1016/j.envc.2021.100147

Abutaleb, K., Ngie, A., Darwish, A., Ahmed, M., Arafat, S., & Ahmed, F. (2015). Assessment of urban heat island using remotely sensed imagery over greater cairo, egypt. Advances in Remote Sensing, 4(4), 35-47. Retrieved from www.scopus.com

Al Rakib, A., Akter, K. S., Rahman, M. N., Arpi, S., & Kafy, A. -. (2020). Analyzing the pattern of land use land cover change and its impact on land surface temperature: A remote sensing approach in mymensingh, bangladesh. 1st Int.Student Res.Conf., Retrieved from www.scopus.com

Al Rakib, A., Ayan, S. M., Orthy, T. T., Sarker, O., Intisar, L., & Arnob, M. A. (2020). Depth-analysis of urban resident-satisfaction level of mirpur, dhaka, bangladesh: A participatory approach. Proceedings of the 1st International Student Research Conference, Retrieved from www.scopus.com

Al Rakib, A., Rahman, M. N., Arpi, S., Ratu, J. F., Afroz, F., Hossain, N., & Zubayer, M. S. (2020). An assessment on the housing satisfaction of padma residential area, rajshahi. Proceedings of the 1st International Student Research Conference, Retrieved from www.scopus.com

Alamgir, M., Khan, N., Shahid, S., Yaseen, Z. M., Dewan, A., Hassan, Q., & Rasheed, B. (2020). Evaluating severity–area–frequency (SAF) of seasonal droughts in bangladesh under climate change scenarios. Stochastic Environmental Research and Risk Assessment, 34(2), 447-464. doi:10.1007/s00477-020-01768-2

Almazroui, M., Islam, M. N., & Jones, P. D. (2013). Urbanization effects on the air temperature rise in saudi arabia. Climatic Change, 120(1-2), 109-122. doi:10.1007/s10584-013-0796-2

Arekhi, M., Goksel, C., Sanli, F. B., & Senel, G. (2019). Comparative evaluation of the spectral and spatial consistency of sentinel-2 and landsat-8 OLI data for igneada longos forest. ISPRS International Journal of Geo-Information, 8(2) doi:10.3390/ijgi8020056

Balzter, H. (2000). Markov chain models for vegetation dynamics. Ecological Modelling, 126(2-3), 139-154. doi:10.1016/S0304-3800(00)00262-3

Chakroborty, S., Rakib, A., Kafy, A., & Al, A. (2020). Monitoring water quality based on community perception in the northwest region of bangladesh. 1st International Student Research Conference - 2020, Dhaka, Bangladesh, Retrieved from www.scopus.com

Chen, X. -., Zhao, H. -., Li, P. -., & Yin, Z. -. (2006). Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sensing of Environment, 104(2), 133-146. doi:10.1016/j.rse.2005.11.016

Choudhury, D., Das, K., & Das, A. (2019). Assessment of land use land cover changes and its impact on variations of land surface temperature in asansol-durgapur development region. Egyptian Journal of Remote Sensing and Space Science, 22(2), 203-218. doi:10.1016/j.ejrs.2018.05.004

Dar, I., Qadir, J., & Shukla, A. (2019). , 1-19. Retrieved from www.scopus.com

Das, N., Mondal, P., Sutradhar, S., & Ghosh, R. (2020). Assessment of variation of land use/land cover and its impact on land surface temperature of asansol subdivision. J.Remote Sens.Sp.Sci., Retrieved from www.scopus.com

Dey, N. N., Al Rakib, A., Kafy, A. -., & Raikwar, V. (2021). Geospatial modelling of changes in land use/land cover dynamics using multi-layer perception markov chain model in rajshahi city, bangladesh. Environmental Challenges, 4 doi:10.1016/j.envc.2021.100148

Dhamge, N. R., Atmapoojya, S., & Kadu, M. S. (2012). Genetic algorithm driven ANN model for runoff estimation. Procedia Technology, 6, 501-508. Retrieved from www.scopus.com

Ding, H., & Shi, W. (2013). Land-use/land-cover change and its influence on surface temperature: A case study in beijing city. International Journal of Remote Sensing, 34(15), 5503-5517. doi:10.1080/01431161.2013.792966

FAO, F. A. (2012). Retrieved from www.scopus.com

Fu, P., & Weng, Q. (2018). Responses of urban heat island in atlanta to different land-use scenarios. Theoretical and Applied Climatology, 133(1-2), 123-135. doi:10.1007/s00704-017-2160-3

Gascon, M., Cirach, M., Martínez, D., Dadvand, P., Valentín, A., Plasència, A., & Nieuwenhuijsen, M. J. (2016). Normalized difference vegetation index (NDVI) as a marker of surrounding greenness in epidemiological studies: The case of barcelona city. Urban Forestry and Urban Greening, 19, 88-94. doi:10.1016/j.ufug.2016.07.001

Hasanlou, M., & Mostofi, N. (2015). Investigating urban heat island estimation and relation between various land cover indices in tehran city using landsat 8 imagery. Proceedings of the 1st International Electronic Conference on Remote Sensing, , 1-11. Retrieved from www.scopus.com

Hossain, M. S., Arshad, M., Qian, L., Zhao, M., Mehmood, Y., & Kächele, H. (2019). Economic impact of climate change on crop farming in bangladesh: An application of ricardian method. Ecological Economics, 164 doi:10.1016/j.ecolecon.2019.106354

Kafy, A. -., Abdullah-Al-Faisal, Raikwar, V., Rakib, A. A., Kona, M. A., & Ferdousi, J. (2021). Geospatial approach for developing an integrated water resource management plan in rajshahi, bangladesh. Environmental Challenges, 4 doi:10.1016/j.envc.2021.100139

Kafy, A. -., Faisal, A. -., Rahman, M. S., Islam, M., Al Rakib, A., Islam, M. A., . . . Sattar, G. S. (2021). Prediction of seasonal urban thermal field variance index using machine learning algorithms in cumilla, bangladesh. Sustainable Cities and Society, 64 doi:10.1016/j.scs.2020.102542

Kafy, A. -., Faisal, A. -., Shuvo, R. M., Naim, M. N. H., Sikdar, M. S., Chowdhury, R. R., . . . Kona, M. A. (2021). Remote sensing approach to simulate the land use/land cover and seasonal land surface temperature change using machine learning algorithms in a fastest-growing megacity of bangladesh. Remote Sensing Applications: Society and Environment, 21 doi:10.1016/j.rsase.2020.100463

Kafy, A. A., Faisal, A. A., Sikdar, S., Hasan, M., & Ahmmed, R. (2019). Using geographic information system and remote sensing techniques in environmental management: A case study in cumilla city corporation. Proceedings of the 1st International Conference on Urban and Regional Planning (ICURP-2019), Bangladesh, Retrieved from www.scopus.com

Kafy, A. A., Islam, M., Sikdar, M. S., Ashrafi, T. J., Faisal, A. A., Islam, M. A., . . . Ali, M. Y. (2021). Remote sensing-based approach to identify the influence of land use/land cover change on the urban thermal environment: A case study in chattogram city, bangladesh. Re-Envisioning Remote Sensing Applications: Perspective from Developing Countries, , 216-237. Retrieved from www.scopus.com

Kafy, A. -., Naim, M. N. H., Khan, M. H. H., Islam, M. A., Al Rakib, A., Faisal, A. -., & Sarker, M. H. S. (2021). Prediction of urban expansion and identifying its impacts on the degradation of agricultural land: A machine learning-based remote-sensing approach in rajshahi, bangladesh. Re-Envisioning Remote Sensing Applications: Perspective from Developing Countries, , 85-106. Retrieved from www.scopus.com

Kafy, A. -., Naim, M. N. H., Subramanyam, G., Faisal, A. -., Ahmed, N. U., Rakib, A. A., . . . Sattar, G. S. (2021). Cellular automata approach in dynamic modelling of land cover changes using RapidEye images in dhaka, bangladesh. Environmental Challenges, 4 doi:10.1016/j.envc.2021.100084

Kafy, A. -., Rahman, M. N., Al Rakib, A., Arpi, S., & Faisal, A. -. (2019). Assessing satisfaction level of urban residential area: A comparative study based on resident's perception in rajshahi city, bangladesh. 1st International Conference on Urban and Regional Planning, Bangladesh, Bangladesh Institute of Planners, Dhaka, Bangladesh, , 225-235. Retrieved from www.scopus.com

Kafy, A. -., Rahman, M. S., Faisal, A. -., Hasan, M. M., & Islam, M. (2020). Modelling future land use land cover changes and their impacts on land surface temperatures in rajshahi, bangladesh. Remote Sensing Applications: Society and Environment, 18 doi:10.1016/j.rsase.2020.100314

Kumar, D., Pfeiffer, M., Gaillard, C., Langan, L., & Scheiter, S. (2020). Climate change and elevated CO2 favor forest over savanna under different future scenarios in south asia. Biogeosci.Discuss, , 1-34. Retrieved from www.scopus.com

Kumar, K. S., Bhaskar, P. U., & Padmakumari, K. (2012). Estimation of land surface temperature to study urban heat island effect using landsat ETM 1 image. International Journal of Engineering Science and Technology, 4(2), 771-778. Retrieved from www.scopus.com

Latham, J. S., He, C. C., Alinovi, L., Di Gregorio, A., & Kalensky, Z. (2002). EAO methodologies for land cover classification and mapping. Linking People, Place, and Policy, , 283-316. Retrieved from www.scopus.com

Luck, M., & Wu, J. (2002). A gradient analysis of urban landscape pattern: A case study from the phoenix metropolitan region, arizona, USA. Landscape Ecology, 17(4), 327-339. doi:10.1023/A:1020512723753

Mansouri, I., Ozbakkaloglu, T., Kisi, O., & Xie, T. (2016). Predicting behavior of FRP-confined concrete using neuro fuzzy, neural network, multivariate adaptive regression splines and M5 model tree techniques. Materials and Structures/Materiaux Et Constructions, 49(10), 4319-4334. doi:10.1617/s11527-015-0790-4

McFeeters, S. K. (1996). The use of the normalized difference water index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425-1432. doi:10.1080/01431169608948714

Ménard, A., & Marceau, D. J. (2005). Exploration of spatial scale sensitivity in geographic cellular automata. Environment and Planning B: Planning and Design, 32(5), 693-714. doi:10.1068/b31163

Mfondoum, A. H. N., Etouna, J., Nongsi, B. K., Moto, F. A. M., & Deussieu, F. N. (2016). Assessment of land degradation status and its impact in arid and semi-arid areas by correlating spectral and principal component analysis neo-bands. International Journal of Advanced Remote Sensing and GIS, 5(2), 1539-1560. Retrieved from www.scopus.com

Mishra, K., & Prasad, P. R. C. (2015). Automatic extraction of water bodies from landsat imagery using perceptron model. J.Comput.Environ.Sci., 2015, 1-9. Retrieved from www.scopus.com

Mushore, T. D., Odindi, J., Dube, T., & Mutanga, O. (2017). Prediction of future urban surface temperatures using medium resolution satellite data in harare metropolitan city, zimbabwe. Building and Environment, 122, 397-410. doi:10.1016/j.buildenv.2017.06.033

Naim, M. N. H., & Kafy, A. -. (2021). Assessment of urban thermal field variance index and defining the relationship between land cover and surface temperature in chattogram city: A remote sensing and statistical approach. Environmental Challenges, 4 doi:10.1016/j.envc.2021.100107

Neteler, M. (2010). Estimating daily land surface temperatures in mountainous environments by reconstructed MODIS LST data. Remote Sensing, 2(1), 333-351. doi:10.3390/rs1020333

Pu, R., Gong, P., Michishita, R., & Sasagawa, T. (2006). Assessment of multi-resolution and multi-sensor data for urban surface temperature retrieval. Remote Sensing of Environment, 104(2), 211-225. doi:10.1016/j.rse.2005.09.022

Rahman, M. S., Mohiuddin, H., Kafy, A. -., Sheel, P. K., & Di, L. (2018). Classification of cities in bangladesh based on remote sensing derived spatial characteristics. J.Urban Manag., Retrieved from www.scopus.com

Ramachandra, T. V., Aithal, B. H., & Sanna, D. (2012). Land surface temperature analysis in an urbanising landscape through multi-resolution data. Research & Reviews: Journal of Space Science & Technology, 1(1), 1-10. Retrieved from www.scopus.com

Rousta, I., Sarif, M. O., Gupta, R. D., Olafsson, H., Ranagalage, M., Murayama, Y., . . . Mushore, T. D. (2018). Spatiotemporal analysis of land use/land cover and its effects on surface urban heat island using landsat data: A case study of metropolitan city tehran (1988-2018). Sustainability (Switzerland), 10(12) doi:10.3390/su10124433

Santé, I., García, A. M., Miranda, D., & Crecente, R. (2010). Cellular automata models for the simulation of real-world urban processes: A review and analysis. Landscape and Urban Planning, 96(2), 108-122. doi:10.1016/j.landurbplan.2010.03.001

Shakhawat Hossain, M., Arshad, M., Qian, L., Kächele, H., Khan, I., Din Il Islam, M., & Golam Mahboob, M. (2020). Climate change impacts on farmland value in bangladesh. Ecological Indicators, 112 doi:10.1016/j.ecolind.2020.106181

Shatnawi, N., & Abu Qdais, H. (2019). Mapping urban land surface temperature using remote sensing techniques and artificial neural network modelling. International Journal of Remote Sensing, 40(10), 3968-3983. doi:10.1080/01431161.2018.1557792

Siddique, M. A., Dongyun, L., Li, P., Rasool, U., Khan, T. U., Farooqi, T. J. A., . . . Rasool, M. A. (2020). Assessment and simulation of land use and land cover change impacts on the land surface temperature of chaoyang district in beijing, china. PeerJ, 2020(3) doi:10.7717/peerj.9115

Ullah, S., Ahmad, K., Sajjad, R. U., Abbasi, A. M., Nazeer, A., & Tahir, A. A. (2019). Analysis and simulation of land cover changes and their impacts on land surface temperature in a lower himalayan region. Journal of Environmental Management, 245, 348-357. doi:10.1016/j.jenvman.2019.05.063

van Gerven, M., & Bohte, S. (2017). Editorial: Artificial neural networks as models of neural information processing. Frontiers in Computational Neuroscience, 11 doi:10.3389/fncom.2017.00114

Weng, Q. (2001). A remote sensing?GIS evaluation of urban expansion and its impact on surface temperature in the zhujiang delta, china. International Journal of Remote Sensing, 22(10), 1999-2014. doi:10.1080/713860788

Yankovich, K. S., Yankovich, E. P., & Baranovskiy, N. V. (2019). Classification of vegetation to estimate forest fire danger using landsat 8 images: Case study. Mathematical Problems in Engineering, 2019 doi:10.1155/2019/6296417

Yengoh, G. T., Dent, D., Olsson, L., Tengberg, A. E., & Tucker, C. J. (2015). Use of the normalized difference vegetation index (NDVI) to assess land degradation at multiple scales. The use of the Normalized Difference Vegetation Index (NDVI) to Assess Land Degradation at Multiple Scales: Current Status, Future Trends, and Practical Considerations, Retrieved from www.scopus.com

Zenil, H. (2010). Compression-based investigation of the dynamical properties of cellular automata and other systems. Complex Systems, 19(1), 1-28. Retrieved from www.scopus.com

Zhou, J., Chen, Y., Zhang, X., & Zhan, W. (2013). Modelling the diurnal variations of urban heat islands with multi-source satellite data. International Journal of Remote Sensing, 34(21), 7568-7588. doi:10.1080/01431161.2013.821576


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.