UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :article
Subject :T Technology (General)
ISSN :0884-8173
Main Author :Aos A. Z. Ansaef Al-Juboori
Additional Authors :Zaidan, A. A.
Zaidan, Bilal Bahaa
Title :Multidimensional benchmarking of the active queue management methods of network congestion control based on extension of fuzzy decision by opinion score method
Place of Production :Tanjung Malim
Publisher :Fakulti Seni, Komputeran Dan Industri Kreatif
Year of Publication :2021
Notes :International Journal of Intelligent Systems
Corporate Name :Universiti Pendidikan Sultan Idris
HTTP Link :Click to view web link

Abstract : Universiti Pendidikan Sultan Idris
This study evaluated the benchmarking process of active queue management (AQM) methods, which consider a multicriteria decision-making (MCDM) problem using multidimensional criteria. Academic studies have benchmarked the AQM methods using MCDM techniques. However, these studies have used existing MCDM techniques, which face considerable theoretical challenges. The latest MCDM method called fuzzy decision by opinion score (FDOSM) was published in the Journal of Applied Soft Computing in 2020 to address the theoretical challenges of the existing MCDM methods. However, FDOSM continues�to encounter serious issues. That is, it exclusively depends on the direct aggregation MCDM approach based on arithmetic mean (AM) operator. However, performing other operators (i.e., geometric mean, harmonic mean, and root mean square), in addition to applying other MCDM approaches (i.e., distance measurement and compromise rank), may result in different ranking results. Hence, this study mainly proposes an extension of FDOSM through the following aspects: (1) application of different aggregation techniques in the direct aggregation MCDM approach, (2) discussion of the effectiveness of each type on the final AQM benchmarking, and (3) use of varying MCDM approaches on FDOSM to reach the optimum result when benchmarking the AQM methods. The current research methodology is based on two sequential phases. The first phase provides the decision matrix used in benchmarking the AQM methods. The decision matrix was constructed based on the AQM evaluation criteria and a list of AQM methods. The second phase presents two stages, namely, data transformation unit and data processing. Findings of the AQM benchmarking are as follows. (1) In the individual FDOSM, two main configurations are recommended when using the AQM benchmarking: direct aggregation MCDM approach with AM operator and compromise rank approach. Benchmarking results of both configurations based on six decision makers are nearly similar, with the AQM BLUE method being ranked the best. The exception is for the results of the compromise rank approach based on the third decision maker, which revealed that the AQM ERED method is the best. (2) Results of the group FDOSM showed a relatively similar order for the AQM methods in both configurations, with the AQM BLUE method being the best. (3) Lastly, significant differences were found among the groups' scores, thereby indicating the validity of the FDOSM-based AQM benchmarking results. ? 2020 Wiley Periodicals LLC

References

Abbasov, B., & Korukoglu, S. (2009). Effective RED: An algorithm to improve RED's performance by reducing packet loss rate. Journal of Network and Computer Applications, 32(3), 703-709. doi:10.1016/j.jnca.2008.07.001

Abdulkareem, K. H. (2020). A new standardisation and selection framework for real-time image dehazing algorithms from multi-foggy scenes based on fuzzy delphi and hybrid multi-criteria decision analysis methods. Neural Computing and Applications, Retrieved from www.scopus.com

Abdulkareem, K. H., Arbaiy, N., Zaidan, A. A., Zaidan, B. B., Albahri, O. S., Alsalem, M. A., & Salih, M. M. (2020). A novel multi-perspective benchmarking framework for selecting image dehazing intelligent algorithms based on BWM and group VIKOR techniques. International Journal of Information Technology and Decision Making, 19(3), 909-957. doi:10.1142/S0219622020500169

Albahri, A. S., Al-Obaidi, J. R., Zaidan, A. A., Albahri, O. S., Hamid, R. A., Zaidan, B. B., . . . Hashim, M. (2020). Multi-biological laboratory examination framework for the prioritization of patients with COVID-19 based on integrated AHP and group VIKOR methods. International Journal of Information Technology and Decision Making, 19(5), 1247-1269. doi:10.1142/S0219622020500285

Albahri, A. S., Zaidan, A. A., Albahri, O. S., Zaidan, B. B., & Alsalem, M. A. (2018). Real-time fault-tolerant mHealth system: Comprehensive review of healthcare services, opens issues, challenges and methodological aspects. Journal of Medical Systems, 42(8) doi:10.1007/s10916-018-0983-9

Albahri, O. S., Al-Obaidi, J. R., Zaidan, A. A., Albahri, A. S., Zaidan, B. B., Salih, M. M., . . . Zulkifli, C. Z. (2020). Helping doctors hasten COVID-19 treatment: Towards a rescue framework for the transfusion of best convalescent plasma to the most critical patients based on biological requirements via ml and novel MCDM methods. Computer Methods and Programs in Biomedicine, 196 doi:10.1016/j.cmpb.2020.105617

Albahri, O. S., Zaidan, A. A., Zaidan, B. B., Hashim, M., Albahri, A. S., & Alsalem, M. A. (2018). Real-time remote health-monitoring systems in a medical centre: A review of the provision of healthcare services-based body sensor information, open challenges and methodological aspects. Journal of Medical Systems, 42(9) doi:10.1007/s10916-018-1006-6

Almahdi, E. M., Zaidan, A. A., Zaidan, B. B., Alsalem, M. A., Albahri, O. S., & Albahri, A. S. (2019). Mobile patient monitoring systems from a benchmarking aspect: Challenges, open issues and recommended solutions. Journal of Medical Systems, 43(7) doi:10.1007/s10916-019-1336-z

Alsalem, M. A., Zaidan, A. A., Zaidan, B. B., Albahri, O. S., Alamoodi, A. H., Albahri, A. S., . . . Mohammed, K. I. (2019). Multiclass benchmarking framework for automated acute leukaemia detection and classification based on BWM and group-VIKOR. Journal of Medical Systems, 43(7) doi:10.1007/s10916-019-1338-x

Alsalem, M. A., Zaidan, A. A., Zaidan, B. B., Hashim, M., Albahri, O. S., Albahri, A. S., . . . Mohammed, K. I. (2018). Systematic review of an automated multiclass detection and classification system for acute leukaemia in terms of evaluation and benchmarking, open challenges, issues and methodological aspects. Journal of Medical Systems, 42(11) doi:10.1007/s10916-018-1064-9

Athuraliya, S., Li, V. H., Low, S. H., & Yin, Q. (2001). Rem: Active queue management. Teletraffic Science and Engineering, 4, 817-828. Retrieved from www.scopus.com

Baklizi, M., Abdel-jaber, H., Abu-Alhaj, M. M., Abdullah, N., Ramadass, S., & Almomani, A. (2013). Dynamic stochastic early discovery: A new congestion control technique to improve networks performance. International Journal of Innovative Computing, Information and Control, 9(3), 1113-1126. Retrieved from www.scopus.com

Baklizi, M., Abdel-Jaber, H., Abu-Shareha, A. A., Abualhaj, M. M., & Ramadass, S. (2014). Fuzzy logic controller of gentle random early detection based on average queue length and delay rate. International Journal of Fuzzy Systems, 16(1), 9-19. Retrieved from www.scopus.com

Çelen, A. (2014). Comparative analysis of normalization procedures in TOPSIS method: With an application to turkish deposit banking market. Informatica (Netherlands), 25(2), 185-208. doi:10.15388/Informatica.2014.10

Chebli, S., Elakkary, A., Sefiani, N., & Elalami, N. (2016). PI stabilization for congestion control of AQM routers with tuning parameter optimization. International Journal of Interactive Multimedia and Artificial Intelligence, 4(1), 52-55. Retrieved from www.scopus.com

Chen, J., Hu, C., & Ji, Z. (2011). Self-tuning random early detection algorithm to improve performance of network transmission. Mathematical Problems in Engineering, 2011 doi:10.1155/2011/872347

Chen, S. -., Cheng, S. -., & Lan, T. -. (2016). A new multicriteria decision making method based on the topsis method and similarity measures between intuitionistic fuzzy sets. Paper presented at the Proceedings - International Conference on Machine Learning and Cybernetics, , 2 692-696. doi:10.1109/ICMLC.2016.7872972 Retrieved from www.scopus.com

Chen, W., Li, Y., & Yang, S. -. (2007). An average queue weight parameterization in a network supporting TCP flows with RED. Paper presented at the 2007 IEEE International Conference on Networking, Sensing and Control, ICNSC'07, 590-595. doi:10.1109/ICNSC.2007.372845 Retrieved from www.scopus.com

Chitra, K., & Padamavathi, D. G. (2010). Adaptive CHOKe: An algorithm to increase the fairness in internet routers. Int.J.Advanced Networking and Applications, 1(6), 382-386. Retrieved from www.scopus.com

Chitra, K., & Padamavathi, D. G. (2010). Adaptive CHOKe: An algorithm to increase the fairness in internet routers. Int.J.Advanced Networking and Applications, 1(6), 382-386. Retrieved from www.scopus.com

Chrysostomou, C., Pitsillides, A., Hadjipollas, G., Sekercioglu, A., & Polycarpou, M. (2003). Fuzzy explicit marking for congestion control in differentiated services networks. Paper presented at the Proceedings - IEEE Symposium on Computers and Communications, 312-319. doi:10.1109/ISCC.2003.1214139 Retrieved from www.scopus.com

Chydziñski, A., & Chróst, U. (2011). Analysis of AQM queues with queue size based packet dropping. International Journal of Applied Mathematics and Computer Science, 21(3), 567-577. doi:10.2478/v10006-011-0045-7

Dai, Y., Hu, B., Su, Y., Mao, C., Chen, J., Zhang, X., . . . Cai, H. (2015). Feature selection of high-dimensional biomedical data using improved SFLA for disease diagnosis. Paper presented at the Proceedings - 2015 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2015, 458-463. doi:10.1109/BIBM.2015.7359728 Retrieved from www.scopus.com

De Campos, L. M., Cano, A., Castellano, J. G., & Moral, S. (2011). Bayesian networks classifiers for gene-expression data. Paper presented at the International Conference on Intelligent Systems Design and Applications, ISDA, 1200-1206. doi:10.1109/ISDA.2011.6121822 Retrieved from www.scopus.com

Etbega, M., Woodward, M., Abdel-Jaber, H., Ali, A., & Habdelja, A. (2006). Retrieved from www.scopus.com

Feng, W. -., Shin, K. G., Kandlur, D. D., & Saha, D. (2002). The blue active queue management algorithms. IEEE/ACM Transactions on Networking, 10(4), 513-528. doi:10.1109/TNET.2002.801399

Grabisch, M., Marichal, J. -., Mesiar, R., & Pap, E. (2011). Aggregation functions: Means. Information Sciences, 181(1), 1-22. doi:10.1016/j.ins.2010.08.043

Hamdi, M. M., Rashid, S. A., Ismail, M., Altahrawi, M. A., Mansor, M. F., & Abufoul, M. K. (2018). Performance evaluation of active queue management algorithms in large network. Paper presented at the ISTT 2018 - 2018 IEEE 4th International Symposium on Telecommunication Technologies, doi:10.1109/ISTT.2018.8701716 Retrieved from www.scopus.com

Hong, J., Joo, C., & Bahk, S. (2007). Active queue management algorithm considering queue and load states. Computer Communications, 30(4), 886-892. doi:10.1016/j.comcom.2006.10.012

Kalid, N., Zaidan, A. A., Zaidan, B. B., Salman, O. H., Hashim, M., Albahri, O. S., & Albahri, A. S. (2018). Based on real time remote health monitoring systems: A new approach for prioritization “Large scales data” patients with chronic heart diseases using body sensors and communication technology. Journal of Medical Systems, 42(4) doi:10.1007/s10916-018-0916-7

Kalid, N., Zaidan, A. A., Zaidan, B. B., Salman, O. H., Hashim, M., & Muzammil, H. (2018). Based real time remote health monitoring systems: A review on patients prioritization and related "big data" using body sensors information and communication technology. Journal of Medical Systems, 42(2) doi:10.1007/s10916-017-0883-4

Khatari, M. (2020). Multidimensional benchmarking framework for AQMs of network congestion control based on AHP and group-TOPSIS. Int J Inf Technol Decis Mak, 19, 1-20. Retrieved from www.scopus.com

Khatari, M., Zaidan, A. A., Zaidan, B. B., Albahri, O. S., & Alsalem, M. A. (2019). Multi-criteria evaluation and benchmarking for active queue management methods: Open issues, challenges and recommended pathway solutions. International Journal of Information Technology and Decision Making, 18(4), 1187-1242. doi:10.1142/S0219622019300039

Kuang, T., Xiao, Z., & Rong, T. (2010). The aggregation of aggregating methods in MCDM based on the fuzzy soft sets. Paper presented at the Proceedings - 2010 2nd WRI Global Congress on Intelligent Systems, GCIS 2010, , 1 135-138. doi:10.1109/GCIS.2010.259 Retrieved from www.scopus.com

Kunniyur, S., & Srikant, R. (2003). End-to-end congestion control schemes: Utility functions, random losses and ECN marks. IEEE/ACM Transactions on Networking, 11(5), 689-702. doi:10.1109/TNET.2003.818183

Liu, S., Başar, T., & Srikant, R. (2008). TCP-illinois: A loss- and delay-based congestion control algorithm for high-speed networks. Performance Evaluation, 65(6-7), 417-440. doi:10.1016/j.peva.2007.12.007

Mohammadi, S., Pour, H. M., Jafari, M., & Javadi, A. (2010). Fuzzy-based PID active queue manager for TCP/IP networks. Paper presented at the 10th International Conference on Information Sciences, Signal Processing and their Applications, ISSPA 2010, 434-439. doi:10.1109/ISSPA.2010.5605462 Retrieved from www.scopus.com

Mohammed, K. I., Jaafar, J., Zaidan, A. A., Albahri, O. S., Zaidan, B. B., Abdulkareem, K. H., . . . Alamoodi, A. H. (2020). A uniform intelligent prioritisation for solving diverse and big data generated from multiple chronic diseases patients based on hybrid decision-making and voting method. IEEE Access, 8, 91521-91530. doi:10.1109/ACCESS.2020.2994746

Mohammed, K. I., Zaidan, A. A., Zaidan, B. B., Albahri, O. S., Albahri, A. S., Alsalem, M. A., & Mohsin, A. H. (2020). Novel technique for reorganisation of opinion order to interval levels for solving several instances representing prioritisation in patients with multiple chronic diseases. Computer Methods and Programs in Biomedicine, 185 doi:10.1016/j.cmpb.2019.105151

Mohammed, K. I., Zaidan, A. A., Zaidan, B. B., Albahri, O. S., Alsalem, M. A., Albahri, A. S., . . . Hashim, M. (2019). Real-time remote-health monitoring systems: A review on patients prioritisation for multiple-chronic diseases, taxonomy analysis, concerns and solution procedure. Journal of Medical Systems, 43(7) doi:10.1007/s10916-019-1362-x

NǍdǍban, S., Dzitac, S., & Dzitac, I. (2016). Fuzzy TOPSIS: A general view. Paper presented at the Procedia Computer Science, , 91 823-831. doi:10.1016/j.procs.2016.07.088 Retrieved from www.scopus.com

Pavlii, D. M. (2001). Normalisation affects the results of MADM methods. Yugoslav Journal of Operations Research, 11(2), 251-265. Retrieved from www.scopus.com

Rawat, J., Singh, A., Bhadauria, H. S., & Virmani, J. (2015). Computer aided diagnostic system for detection of leukemia using microscopic images. Paper presented at the Procedia Computer Science, , 70 748-756. doi:10.1016/j.procs.2015.10.113 Retrieved from www.scopus.com

Rossides, L., Sekercioglu, A., Pitsillides, A., Vasilakos, A., Kohler, S., & Tran-Gia, P. (2002). Retrieved from www.scopus.com

Rossides, L., Sekercioglu, A., Pitsillides, A., Vasilakos, A., Kohler, S., & Tran-Gia, P. (2002). Advances in computational intelligence and learning. Fuzzy RED: Congestion Control for TCP/IP Diff-Serv, , 18. Retrieved from www.scopus.com

Salem, H., Attiya, G., & El-Fishawy, N. (2016). Gene expression profiles based human cancer diseases classification. Paper presented at the 2015 11th International Computer Engineering Conference: Today Information Society what's Next?, ICENCO 2015, 181-187. doi:10.1109/ICENCO.2015.7416345 Retrieved from www.scopus.com

Salih, M. M., Zaidan, B. B., & Zaidan, A. A. (2020). Fuzzy decision by opinion score method. Applied Soft Computing Journal, 96 doi:10.1016/j.asoc.2020.106595

Stanojević, R., Shorten, R. N., & Kellett, C. M. (2006). Adaptive tuning of drop-tail buffers for reducing queueing delays. IEEE Communications Letters, 10(7), 570-572. doi:10.1109/LCOMM.2006.1673016

Tariq, I., AlSattar, H. A., Zaidan, A. A., Zaidan, B. B., Abu Bakar, M. R., Mohammed, R. T., . . . Albahri, A. S. (2020). MOGSABAT: A metaheuristic hybrid algorithm for solving multi-objective optimisation problems. Neural Computing and Applications, 32(8), 3101-3115. doi:10.1007/s00521-018-3808-3

Wang, L., & Li, N. (2020). Pythagorean fuzzy interaction power bonferroni mean aggregation operators in multiple attribute decision making. International Journal of Intelligent Systems, 35(1), 150-183. doi:10.1002/int.22204

Yaghmaei, M., Menhaj, M. B., & Amintoosi, H. (2004). A fuzzy extension to the blue active queue management algorithm. J Iran Assoc Electr Electron Eng, 1, 1-14. Retrieved from www.scopus.com

Yang, Z. L., Bonsall, S., & Wang, J. (2011). Approximate TOPSIS for vessel selection under uncertain environment. Expert Systems with Applications, 38(12), 14523-14534. doi:10.1016/j.eswa.2011.05.032

Zaidan, A. A., Zaidan, B. B., Albahri, O. S., Alsalem, M. A., Albahri, A. S., Yas, Q. M., & Hashim, M. (2018). A review on smartphone skin cancer diagnosis apps in evaluation and benchmarking: Coherent taxonomy, open issues and recommendation pathway solution. Health and Technology, 8(4), 223-238. doi:10.1007/s12553-018-0223-9

Zaidan, A. A., Zaidan, B. B., Alsalem, M. A., Albahri, O. S., Albahri, A. S., & Qahtan, M. Y. (2020). Multi-agent learning neural network and bayesian model for real-time IoT skin detectors: A new evaluation and benchmarking methodology. Neural Computing and Applications, 32(12), 8315-8366. doi:10.1007/s00521-019-04325-3

Zaidan, B. B., & Zaidan, A. A. (2018). Comparative study on the evaluation and benchmarking information hiding approaches based multi-measurement analysis using TOPSIS method with different normalisation, separation and context techniques. Measurement: Journal of the International Measurement Confederation, 117, 277-294. doi:10.1016/j.measurement.2017.12.019

Zaidan, B. B., & Zaidan, A. A. (2018). Comparative study on the evaluation and benchmarking information hiding approaches based multi-measurement analysis using TOPSIS method with different normalisation, separation and context techniques. Measurement: Journal of the International Measurement Confederation, 117, 277-294. doi:10.1016/j.measurement.2017.12.019

Zhang, L., & Huang, X. (2015). Multiple SVM-RFE for multi-class gene selection on DNA microarray data. Paper presented at the Proceedings of the International Joint Conference on Neural Networks, , 2015-September doi:10.1109/IJCNN.2015.7280417 Retrieved from www.scopus.com


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.