UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :article
Subject :Q Science (General)
ISSN :0376-7388
Main Author :Mohd Hafiz Dzarfan Othman
Additional Authors :Suriani Abu Bakar
Title :Novel ceramic hollow fibre membranes contactor derived from kaolin and zirconia for ammonia removal and recovery from synthetic ammonia
Place of Production :Tanjung Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2021
Notes :Journal of Membrane Science
Corporate Name :Universiti Pendidikan Sultan Idris
HTTP Link :Click to view web link

Abstract : Universiti Pendidikan Sultan Idris
The adverse effects of ammonia found in wastewater streams lead to the development of advanced water treatment technology, i.e. membrane contactor (MC). In this study, single layer hollow fibre membrane (SLZK) and dual layer hollow fibre membrane (DLZK) were prepared from zirconia and kaolin and modified into hydrophobic membrane through simple grafting process via fluoroalkylsilane (FAS) agent. The properties of membranes such as morphology, surface roughness, mechanical strength, wettability and liquid entry pressure were analysed through scanning electron microscopy (SEM), atomic force microscopy (AFM), 3-point bending strength, contact angle and LEPw setup. Finally, the performance of the membranes was also investigated towards ammonia removal via membrane contactor system. Our findings showed that hydrophobicity properties significantly improved for both SLZK and DLZK membranes after grafting modification process as indicated by the increase of contact angle value from 5� and 1� to 132.7� and ~180.0� respectively. Based on the morphological analysis, the surface of DLZK showed more porous structure as compared to the SLZK. In addition, DLZK also displayed the highest mechanical strength and contact angle reading of 125 MPa and ~180� respectively. This suggests that the DLZK showed an excellent membrane contactor performance with highest value of mass transfer coefficient (3.77 x 10-5 ms-1) and almost complete removal of ammonia removal (91%). Overall, these results implied that dual layer ceramic membrane developed from kaolin and zirconia could provide the basis for the development of alternative ceramic membrane with excellent properties for membrane contactor system. ? 2021 Elsevier B.V.

References

Abd Aziz, M. H., Dzarfan Othman, M. H., Alias, N. H., Nakayama, T., Shingaya, Y., Hashim, N. A., . . . Jaafar, J. (2020). Enhanced omniphobicity of mullite hollow fiber membrane with organosilane-functionalized TiO2 micro-flowers and nanorods layer deposition for desalination using direct contact membrane distillation. Journal of Membrane Science, 607 doi:10.1016/j.memsci.2020.118137

Abdulhameed, M. A., Othman, M. H. D., Ismail, A. F., Matsuura, T., Harun, Z., Rahman, M. A., . . . Hubadillah, S. K. (2017). Carbon dioxide capture using a superhydrophobic ceramic hollow fibre membrane for gas-liquid contacting process. Journal of Cleaner Production, 140, 1731-1738. doi:10.1016/j.jclepro.2016.07.015

Aissaoui, N., Bergaoui, L., Landoulsi, J., Lambert, J. -., & Boujday, S. (2012). Silane layers on silicon surfaces: Mechanism of interaction, stability, and influence on protein adsorption. Langmuir, 28(1), 656-665. doi:10.1021/la2036778

Aligwe, P. A., Sirkar, K. K., & Canlas, C. J. (2019). Hollow fiber gas membrane-based removal and recovery of ammonia from water in three different scales and types of modules. Separation and Purification Technology, 224, 580-590. doi:10.1016/j.seppur.2019.04.074

Aligwe, P. A., Sirkar, K. K., Canlas, C. J., & Cheng, W. -. (2020). Supported gas membrane-based ammonia removal and recovery for a pH-dependent sink: Effect of water vapor transport. Journal of Membrane Science, 611 doi:10.1016/j.memsci.2020.118308

Ansaloni, L., Hartono, A., Awais, M., Knuutila, H. K., & Deng, L. (2019). CO2 capture using highly viscous amine blends in non-porous membrane contactors. Chemical Engineering Journal, 359, 1581-1591. doi:10.1016/j.cej.2018.11.014

Ashrafizadeh, S. N., & Khorasani, Z. (2010). Ammonia removal from aqueous solutions using hollow-fiber membrane contactors. Chemical Engineering Journal, 162(1), 242-249. doi:10.1016/j.cej.2010.05.036

Bayat, A., Ebrahimi, M., & Moshfegh, A. Z. (2014). Correlation between surface roughness and hydrophobicity of GLAD RF sputtered PTFE/W/Glass nanorod thin films. Vacuum, 101, 279-282. doi:10.1016/j.vacuum.2013.09.007

Boussu, K., Van Der Bruggen, B., Volodin, A., Snauwaert, J., Van Haesendonck, C., & Vandecasteele, C. (2005). Roughness and hydrophobicity studies of nanofiltration membranes using different modes of AFM. Journal of Colloid and Interface Science, 286(2), 632-638. doi:10.1016/j.jcis.2005.01.095

Camus, O., Perera, S., Crittenden, B., Van Delft, Y. C., Meyer, D. F., Pex, P. P. A. C., . . . Nobel, W. (2006). Ceramic membranes for ammonia recovery. AIChE Journal, 52(6), 2055-2065. doi:10.1002/aic.10800

Ciampi, S., Harper, J. B., & Gooding, J. J. (2010). Wet chemical routes to the assembly of organic monolayers on silicon surfaces via the formation of si-C bonds: Surface preparation, passivation and functionalization. Chemical Society Reviews, 39(6), 2158-2183. doi:10.1039/b923890p

Das, R., Sondhi, K., Majumdar, S., & Sarkar, S. (2016). Development of hydrophobic clay–alumina based capillary membrane for desalination of brine by membrane distillation. Journal of Asian Ceramic Societies, 4(3), 243-251. doi:10.1016/j.jascer.2016.04.004

Franco, I. B., & Abe, M. (2020). SDG 17 partnerships for the goals. Actioning the Global Goals for Local Impact, , 275-293. Retrieved from www.scopus.com

Ganesan, S., Nadarajah, S., Khairuddean, M., & Teh, G. B. (2019). Studies on lauric acid conversion to methyl ester via catalytic esterification using ammonium ferric sulphate. Renewable Energy, 140, 9-16. doi:10.1016/j.renene.2019.03.031

Gazagnes, L., Cerneaux, S., Persin, M., Prouzet, E., & Larbot, A. (2007). Desalination of sodium chloride solutions and seawater with hydrophobic ceramic membranes. Desalination, 217(1-3), 260-266. doi:10.1016/j.desal.2007.01.017

Gerald, B. (2018). A brief review of independent, dependent and one sample t-test. Int.J.Appl.Math.Theor.Phys, 4(2), 50-54. Retrieved from www.scopus.com

Hasanoĝlu, A., Romero, J., Pérez, B., & Plaza, A. (2010). Ammonia removal from wastewater streams through membrane contactors: Experimental and theoretical analysis of operation parameters and configuration. Chemical Engineering Journal, 160(2), 530-537. doi:10.1016/j.cej.2010.03.064

Hassan, E. W., Chaalal, O., & Hossain, M. M. (2019). A simple solution of dissolved ammonia recovery process in a hollow-fiber membrane contactor: Comparison with experimental and numerical results. J.Membr.Separ.Technol., 8, 1-11. Retrieved from www.scopus.com

Hubadillah, S. K., Dzarfan Othman, M. H., Sheikh Abdul Kadir, S. H., Jamalludin, M. R., Harun, Z., Abd Aziz, M. H., . . . Fansuri, H. (2019). Removal of as(iii) and as(v) from water using green, silica-based ceramic hollow fibre membranes: Via direct contact membrane distillation. RSC Advances, 9(6), 3367-3376. doi:10.1039/c8ra08143c

Hubadillah, S. K., Kumar, P., Dzarfan Othman, M. H., Ismail, A. F., Rahman, M. A., & Jaafar, J. (2018). A low cost, superhydrophobic and superoleophilic hybrid kaolin-based hollow fibre membrane (KHFM) for efficient adsorption-separation of oil removal from water. RSC Advances, 8(6), 2986-2995. doi:10.1039/c7ra13206a

Hubadillah, S. K., Othman, M. H. D., Harun, Z., Ismail, A. F., Rahman, M. A., Jaafar, J., . . . Mohtor, N. H. (2017). Superhydrophilic, low cost kaolin-based hollow fibre membranes for efficient oily-wastewater separation. Materials Letters, 191, 119-122. doi:10.1016/j.matlet.2016.12.099

Hubadillah, S. K., Othman, M. H. D., Ismail, A. F., Rahman, M. A., & Jaafar, J. (2019). A low cost hydrophobic kaolin hollow fiber membrane (h-KHFM) for arsenic removal from aqueous solution via direct contact membrane distillation. Separation and Purification Technology, , 31-39. doi:10.1016/j.seppur.2018.04.025

Hubadillah, S. K., Othman, M. H. D., Matsuura, T., Rahman, M. A., Jaafar, J., Ismail, A. F., & Amin, S. Z. M. (2018). Green silica-based ceramic hollow fiber membrane for seawater desalination via direct contact membrane distillation. Separation and Purification Technology, 205, 22-31. doi:10.1016/j.seppur.2018.04.089

Hubadillah, S. K., Tai, Z. S., Othman, M. H. D., Harun, Z., Jamalludin, M. R., Rahman, M. A., . . . Ismail, A. F. (2019). Hydrophobic ceramic membrane for membrane distillation: A mini review on preparation, characterization, and applications. Separation and Purification Technology, 217, 71-84. doi:10.1016/j.seppur.2019.02.014

Imai, M., Furusaki, S., & Miyauchi, T. (1982). Separation of volatile materials by gas membranes. Industrial and Engineering Chemistry Process Design and Development, 21(3), 421-426. doi:10.1021/i200018a013

Kadam, S. S., Mesbah, A., van der Windt, E., & Kramer, H. J. M. (2011). Rapid online calibration for ATR-FTIR spectroscopy during batch crystallization of ammonium sulphate in a semi-industrial scale crystallizer. Chemical Engineering Research and Design, 89(7), 995-1005. doi:10.1016/j.cherd.2010.11.013

Krajewski, S. R., Kujawski, W., Bukowska, M., Picard, C., & Larbot, A. (2006). Application of fluoroalkylsilanes (FAS) grafted ceramic membranes in membrane distillation process of NaCl solutions. Journal of Membrane Science, 281(1-2), 253-259. doi:10.1016/j.memsci.2006.03.039

Kujawa, J., Cerneaux, S., & Kujawski, W. (2014). Investigation of the stability of metal oxide powders and ceramic membranes grafted by perfluoroalkylsilanes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 443, 109-117. doi:10.1016/j.colsurfa.2013.10.059

Kurniawan, T. A., Singh, D., Avtar, R., Othman, M. H. D., Hwang, G. H., Albadarin, A. B., . . . Shirazian, S. (2021). Resource recovery from landfill leachate: An experimental investigation and perspectives. Chemosphere, 274 doi:10.1016/j.chemosphere.2021.129986

Kurniawan, T. A., Singh, D., Xue, W., Avtar, R., Othman, M. H. D., Hwang, G. H., . . . Shirazian, S. (2021). Resource recovery toward sustainability through nutrient removal from landfill leachate. Journal of Environmental Management, 287 doi:10.1016/j.jenvman.2021.112265

Larbot, A., Gazagnes, L., Krajewski, S., Bukowska, M., & Kujawski, W. (2004). Water desalination using ceramic membrane distillation. Desalination, 168(1-3), 367-372. doi:10.1016/j.desal.2004.07.021

Lauterböck, B., Moder, K., Germ, T., & Fuchs, W. (2013). Impact of characteristic membrane parameters on the transfer rate of ammonia in membrane contactor application. Separation and Purification Technology, 116, 327-334. doi:10.1016/j.seppur.2013.06.010

Lee, W., An, S., & Choi, Y. (2021). Ammonia harvesting via membrane gas extraction at moderately alkaline pH: A step toward net-profitable nitrogen recovery from domestic wastewater. Chemical Engineering Journal, 405 doi:10.1016/j.cej.2020.126662

Li, Z., Rana, D., Matsuura, T., & Lan, C. Q. (2019). The performance of polyvinylidene fluoride - polytetrafluoroethylene nanocomposite distillation membranes: An experimental and numerical study. Separation and Purification Technology, 226, 192-208. doi:10.1016/j.seppur.2019.05.102

Luis, P. (2018). Membrane contactors. Fundamental modeling of membrane systems: Membrane and process performance (pp. 153-10) doi:10.1016/B978-0-12-813483-2.00005-8 Retrieved from www.scopus.com

MacDonald, A., Clarke, A., Huang, L., Roseland, M., & Seitanidi, M. M. (2018). Multi-stakeholder partnerships (SDG #17) as a means of achieving sustainable communities and cities (SDG #11) doi:10.1007/978-3-319-63007-6_12 Retrieved from www.scopus.com

Madhurambal, G., Mojumdar, S. C., Hariharan, S., & Ramasamy, P. (2004). TG, DTA, FTIR and raman spectral analysis of Zna/Mgb ammonium sulfate mixed crystals. Journal of Thermal Analysis and Calorimetry, 78(1), 125-133. doi:10.1023/B:JTAN.0000042160.82063.c4

Mandowara, A., & Bhattacharya, P. K. (2011). Simulation studies of ammonia removal from water in a membrane contactor under liquid-liquid extraction mode. Journal of Environmental Management, 92(1), 121-130. doi:10.1016/j.jenvman.2010.08.015

Mohtor, N. H., Othman, M. H. D., Bakar, S. A., Kurniawan, T. A., Dzinun, H., Norddin, M. N. A. M., & Rajis, Z. (2018). Synthesis of nanostructured titanium dioxide layer onto kaolin hollow fibre membrane via hydrothermal method for decolourisation of reactive black 5. Chemosphere, 208, 595-605. doi:10.1016/j.chemosphere.2018.05.159

Nadykto, A. B., Yu, F., & Herb, J. (2008). Effect of ammonia on the gas-phase hydration of the common atmospheric ion HSO 4 -. International Journal of Molecular Sciences, 9(11), 2184-2193. doi:10.3390/ijms9112184

Nagy, E. (2019). Forward osmosis. Basic Equations of Mass Transport through a Membrane Layer, , 447-456. Retrieved from www.scopus.com

Norddahl, B., Horn, V. G., Larsson, M., du Preez, J. H., & Christensen, K. (2006). A membrane contactor for ammonia stripping, pilot scale experience and modeling. Desalination, 199(1-3), 172-174. doi:10.1016/j.desal.2006.03.037

Pauzan, M. A. B. (2021). Fabrication and characterization of robust mixed zirconia-kaolin hollow fibre membrane: Dissolution study in high alkaline of ammonia solution. Kor.J.Chem.Eng., Retrieved from www.scopus.com

Pauzan, M. A. B., Othman, M. H. D., Ismail, N. J., Puteh, M. H., Ismail, A. F., A. Rahman, M., & Jaafar, J. (2021). Fabrication of zirconia-kaolin dual layer hollow fiber membrane: Physical and performance study for industrial wastewater treatment. Journal of Water Process Engineering, 41 doi:10.1016/j.jwpe.2021.102031

Pradhan, P., Costa, L., Rybski, D., Lucht, W., & Kropp, J. P. (2017). A systematic study of sustainable development goal (SDG) interactions. Earth's Future, 5(11), 1169-1179. doi:10.1002/2017EF000632

Qi, Z., & Cussler, E. L. (1985). Hollow fiber gas membranes. AIChE Journal, 31(9), 1548-1553. doi:10.1002/aic.690310918

Qi, Z., & Cussler, E. L. (1985). Microporous hollow fibers for gas absorption. II. mass transfer across the membrane. Journal of Membrane Science, 23(3), 333-345. doi:10.1016/S0376-7388(00)83150-6

Qu, D., Sun, D., Wang, H., & Yun, Y. (2013). Experimental study of ammonia removal from water by modified direct contact membrane distillation. Desalination, 326, 135-140. doi:10.1016/j.desal.2013.07.021

Rongwong, W., & Sairiam, S. (2020). A modeling study on the effects of pH and partial wetting on the removal of ammonia nitrogen from wastewater by membrane contactors. Journal of Environmental Chemical Engineering, 8(5) doi:10.1016/j.jece.2020.104240

Semmens, M. J., Foster, D. M., & Cussler, E. L. (1990). Ammonia removal from water using microporous hollow fibers. Journal of Membrane Science, 51(1-2), 127-140. doi:10.1016/S0376-7388(00)80897-2

Smith, V. H. (2003). Eutrophication of freshwater and coastal marine ecosystems: A global problem. Environmental Science and Pollution Research, 10(2), 126-139. doi:10.1065/espr2002.12.142

Tan, X., Tan, S. P., Teo, W. K., & Li, K. (2006). Polyvinylidene fluoride (PVDF) hollow fibre membranes for ammonia removal from water. Journal of Membrane Science, 271(1-2), 59-68. doi:10.1016/j.memsci.2005.06.057

Ulbricht, M., Lakner, G., Lakner, J., & Belafi-Bako, K. (2017). Transmembranechemisorption of ammonia from sealing water in hungarian powder metallurgy furnace. Desalination and Water Treatment, 75, 253-259. doi:10.5004/dwt.2017.20517

Ulbricht, M., Schneider, J., Stasiak, M., & Sengupta, A. (2013). Ammonia recovery from industrial wastewater by transMembranechemiSorption. Chemie-Ingenieur-Technik, 85(8), 1259-1262. doi:10.1002/cite.201200237

Xu, M., Fralick, D., Zheng, J. Z., Wang, B., Tu, X. M., & Feng, C. (2017). The differences and similarities between two-sample t-test and paired t-test. Shanghai Archives of Psychiatry, 29(3), 184-188. doi:10.11919/j.issn.1002-0829.217070

Yusof, N., Rana, D., Ismail, A. F., & Matsuura, T. (2016). Microstructure of polyacrylonitrile-based activated carbon fibers prepared from solvent-free coagulation process. Journal of Applied Research and Technology, 14(1), 54-61. doi:10.1016/j.jart.2016.02.001

Zhu, Z., Hao, Z., Shen, Z., & Chen, J. (2005). Modified modeling of the effect of pH and viscosity on the mass transfer in hydrophobic hollow fiber membrane contactors. Journal of Membrane Science, 250(1-2), 269-276. doi:10.1016/j.memsci.2004.10.031


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.