UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :article
Subject :Q Science (General)
ISSN :0944-1344
Main Author :Suriani Abu Bakar
Additional Authors :Nur Jannah Idris
Azmi Mohamed
Title :Photocatalytic performance improvement by utilizing GO_MWCNTs hybrid solution on sand/ZnO/TiO2-based photocatalysts to degrade methylene blue dye
Place of Production :Tanjung Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2021
Notes :Environmental Science and Pollution Research
Corporate Name :Universiti Pendidikan Sultan Idris
HTTP Link :Click to view web link

Abstract : Universiti Pendidikan Sultan Idris
In this work, sand/zinc oxide (ZnO)/titanium dioxide (TiO2)?based photocatalysts were hybridized with graphene oxide (GO) and GO_multi-walled carbon nanotubes (MWCNTs) hybrid solution. The novel hybrid was then used in photocatalysis to degrade dye contamination. The nanocomposite photocatalyst was initially fabricated by growing ZnO nanorods (NRs) via sol?gel immersion followed by synthesizing TiO2 NRs for different times (5 and 20 h) using a hydrothermal method on sand as a substrate. Prior to the hybridization, the initial GO was synthesized using electrochemical exfoliation and further mixed with 1 wt% MWCNTs to form GO_MWCNTs hybrid solution. The synthesized GO and GO_MWCNTs hybrid solution were then incorporated onto sand/ZnO/TiO2 nanocomposite?based photocatalysts through immersion. Various sand/ZnO/TiO2-based photocatalysts were then tested for methylene blue (MB) dye degradation within 3 days. On the basis of UV-Vis measurement, the highest MB degradation was achieved by using sand/ZnO NRs/TiO2 NRs (5 h)/GO_MWCNTs (92.60%). The high surface area and high electrical conductivity of GO_MWCNTs prolonged the lifetime of electron/hole separation and thus enhanced the photocatalytic performance. ? 2020, Springer-Verlag GmbH Germany, part of Springer Nature.

References

Abdel-Maksoud, Y. K., Imam, E., & Ramadan, A. R. (2018). Sand supported TiO2 photocatalyst in a tray photo-reactor for the removal of emerging contaminants in wastewater. Catalysis Today, 313, 55-62. doi:10.1016/j.cattod.2017.10.029

Ahmad, A., Razali, M. H., Mamat, M., Kassim, K., & Amin, K. A. M. (2020). Physiochemical properties of TiO2 nanoparticle loaded APTES-functionalized MWCNTs composites and their photocatalytic activity with kinetic study. Arabian Journal of Chemistry, 13(1), 2785-2794. doi:10.1016/j.arabjc.2018.07.009

Ahn, K., Lee, H. -., Jeong, Y. -., Kim, J. -., Jeong, S. -., & Cho, C. -. (2011). Effects of TiO 2 nanorod length and post-annealing on the electrical properties of TiO 2 nanobarbed fiber structures. Journal of Nanoscience and Nanotechnology, 11(8), 7155-7158. doi:10.1166/jnn.2011.4847

Alansi, A. M., Alkayali, W. Z., Al-Qunaibit, M. H., Qahtan, T. F., & Saleh, T. A. (2015). Synthesis of exfoliated polystyrene/anionic clay MgAl-layered double hydroxide: Structural and thermal properties. RSC Advances, 5(87), 71441-71448. doi:10.1039/c5ra10545e

Albert, E. L., Che Abdullah, C. A., & Shiroshaki, Y. (2018). Synthesis and characterization of graphene oxide functionalized with magnetic nanoparticle via simple emulsion method. Results in Physics, 11, 944-950. doi:10.1016/j.rinp.2018.10.054

Alhomoudi, I. A., & Newaz, G. (2009). Residual stresses and raman shift relation in anatase TiO2 thin film. Thin Solid Films, 517(15), 4372-4378. doi:10.1016/j.tsf.2009.02.141

Arthi, G. (2016). Investigation of Growth and Functional Properties of Tio 2 Nanostructures for Dye Sensitized Solar Cell Applications.Dissertation, Retrieved from www.scopus.com

Azmina, M. S., Nor, R. M., Rafaie, H. A., Razak, N. S. A., Sani, S. F. A., & Osman, Z. (2017). Enhanced photocatalytic activity of zno nanoparticles grown on porous silica microparticles. Applied Nanoscience (Switzerland), 7(8), 885-892. doi:10.1007/s13204-017-0626-3

Ba-Abbad, M. M., Kadhum, A. A. H., Mohamad, A. B., Takriff, M. S., & Sopian, K. (2013). Optimization of process parameters using D-optimal design for synthesis of ZnO nanoparticles via sol-gel technique. Journal of Industrial and Engineering Chemistry, 19(1), 99-105. doi:10.1016/j.jiec.2012.07.010

Bai, L. -., Kou, G., Gong, Z. -., & Zhao, Z. -. (2013). Effect of zn and ti mole ratio on microstructure and photocatalytic properties of magnetron sputtered TiO2-ZnO heterogeneous composite film. Transactions of Nonferrous Metals Society of China (English Edition), 23(12), 3643-3649. doi:10.1016/S1003-6326(13)62912-X

Banerjee, S., Benjwal, P., Singh, M., & Kar, K. K. (2018). Graphene oxide (rGO)-metal oxide (TiO 2 /Fe 3 O 4 ) based nanocomposites for the removal of methylene blue. Applied Surface Science, 439, 560-568. doi:10.1016/j.apsusc.2018.01.085

Basturk, E., & Karatas, M. (2015). Decolorization of antraquinone dye reactive blue 181 solution by UV/H2O2 process. Journal of Photochemistry and Photobiology A: Chemistry, 299, 67-72. doi:10.1016/j.jphotochem.2014.11.003

Batakliev, T., Petrova-Doycheva, I., Angelov, V., Georgiev, V., Ivanov, E., Kotsilkova, R., . . . Ciambelli, P. (2019). Effects of graphene nanoplatelets and multiwall carbon nanotubes on the structure and mechanical properties of poly(lactic acid) composites: A comparative study. Applied Sciences (Switzerland), 9(3) doi:10.3390/app9030469

Bel Hadjltaief, H., Ben Zina, M., Galvez, M. E., & Da Costa, P. (2016). Photocatalytic degradation of methyl green dye in aqueous solution over natural clay-supported ZnO-TiO2 catalysts. Journal of Photochemistry and Photobiology A: Chemistry, 315, 25-33. doi:10.1016/j.jphotochem.2015.09.008

Bîru, E. I., & Iovu, H. (2018). Graphene nanocomposites studied by raman spectroscopy. Raman Spectroscopy, , 179-201. Retrieved from www.scopus.com

Bodson, C. J., Lambert, S. D., Alié, C., Cattoën, X., Pirard, J. -., Bied, C., . . . Heinrichs, B. (2010). Effects of additives and solvents on the gel formation rate and on the texture of P- and si-doped TiO2 materials. Microporous and Mesoporous Materials, 134(1-3), 157-164. doi:10.1016/j.micromeso.2010.05.021

Bokobza, L., Rahmani, M., Belin, C., Bruneel, J. -., & El Bounia, N. -. (2008). Blends of carbon blacks and multiwall carbon nanotubes as reinforcing fillers for hydrocarbon rubbers. Journal of Polymer Science, Part B: Polymer Physics, 46(18), 1939-1951. doi:10.1002/polb.21529

Bozkurt Çırak, B., Caglar, B., Kılınç, T., Morkoç Karadeniz, S., Erdoğan, Y., Kılıç, S., . . . Çırak, Ç. (2019). Synthesis and characterization of ZnO nanorice decorated TiO2 nanotubes for enhanced photocatalytic activity. Materials Research Bulletin, 109, 160-167. doi:10.1016/j.materresbull.2018.09.039

Brodie, B. C. (1859). On the atomic weight of graphite. Philos.Trans.R.Soc.London, 149, 249-259. Retrieved from www.scopus.com

Chaudhary, D., Singh, S., Vankar, V. D., & Khare, N. (2018). ZnO nanoparticles decorated multi-walled carbon nanotubes for enhanced photocatalytic and photoelectrochemical water splitting. Journal of Photochemistry and Photobiology A: Chemistry, 351, 154-161. doi:10.1016/j.jphotochem.2017.10.018

Chen, X., Wu, Z., Liu, D., & Gao, Z. (2017). Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes. Nanoscale Research Letters, 12(1) doi:10.1186/s11671-017-1904-4

Chen, Y. -., Tan, Y. -., Li, J., Hao, Y. -., Shi, Y. -., & Wang, M. (2018). Graphene oxide-assisted dispersion of multi-walled carbon nanotubes in biodegradable poly(ε-caprolactone) for mechanical and electrically conductive enhancement. Polymer Testing, 65, 387-397. doi:10.1016/j.polymertesting.2017.12.019

Cheng, C., Amini, A., Zhu, C., Xu, Z., Song, H., & Wang, N. (2014). Enhanced photocatalytic performance of TiO2-ZnO hybrid nanostructures. Scientific Reports, 4 doi:10.1038/srep04181

Cheng, P., Wang, Y., Xu, L., Sun, P., Su, Z., Jin, F., . . . Lu, G. (2016). High specific surface area urchin-like hierarchical ZnO-TiO2 architectures: Hydrothermal synthesis and photocatalytic properties. Materials Letters, 175, 52-55. doi:10.1016/j.matlet.2016.03.120

Da Dalt, S., Alves, A. K., & Bergmann, C. P. (2016). Preparation and performance of TiO2-ZnO/CNT hetero-nanostructures applied to photodegradation of organic dye. Materials Research, 19(6), 1372-1375. doi:10.1590/1980-5373-MR-2016-0036

Danish, R., Ahmed, F., Arshi, N., Anwar, M. S., & Koo, B. H. (2014). Facile synthesis of single-crystalline rutile TiO2 nano-rods by solution method. Transactions of Nonferrous Metals Society of China (English Edition), 24(SUPPL. 1), s152-s156. doi:10.1016/S1003-6326(14)63303-3

De Marco, M., Menzel, R., Bawaked, S. M., Mokhtar, M., Obaid, A. Y., Basahel, S. N., & Shaffer, M. S. P. (2017). Hybrid effects in graphene oxide/carbon nanotube-supported layered double hydroxides: Enhancing the CO2 sorption properties. Carbon, 123, 616-627. doi:10.1016/j.carbon.2017.07.094

Duan, Q., Lee, J., Liu, Y., & Qi, H. (2016). Preparation and photocatalytic performance of MWCNTs/TiO2 nanocomposites for degradation of aqueous substrate. Journal of Chemistry, 2016 doi:10.1155/2016/1262017

Eddy, D. R., Puri, F. N., & Noviyanti, A. R. (2015). Synthesis and photocatalytic activity of silica-based sand quartz as the supporting TiO 2 photocatalyst. Procedia Chem, 17, 55-58. Retrieved from www.scopus.com

Fadillah, G., Saleh, T. A., & Wahyuningsih, S. (2019). Enhanced electrochemical degradation of 4-nitrophenol molecules using novel Ti/TiO2-NiO electrodes. Journal of Molecular Liquids, 289 doi:10.1016/j.molliq.2019.111108

Fudzi, L. M., Zainal, Z., Lim, H. N., Chang, S. -., Holi, A. M., & Ali, M. S. -. (2018). Effect of temperature and growth time on vertically aligned ZnO nanorods by simplified hydrothermal technique for photoelectrochemical cells. Materials, 11(5) doi:10.3390/ma11050704

Greenwood, N. N., & Earnshaw, A. (1984). Chemistry of the Elements, Retrieved from www.scopus.com

Habib, M. A., Shahadat, M. T., Bahadur, N. M., Ismail, I. M. I., & Mahmood, A. J. (2013). Synthesis and characterization of ZnO-TiO2 nanocomposites and their application as photocatalysts. Int.Nano Lett., 3(1), 1-8. Retrieved from www.scopus.com

Hakki, H. K., Allahyari, S., Rahemi, N., & Tasbihi, M. (2019). Surface properties, adherence, and photocatalytic activity of sol–gel dip-coated TiO2–ZnO films on glass plates. Comptes Rendus Chimie, 22(5), 393-405. doi:10.1016/j.crci.2019.05.007

Hardcastle, F. D. (2011). Raman spectroscopy of titania (TiO2) nanotubular water-splitting catalysts. J Ark Acad Sci, 65, 43-48. Retrieved from www.scopus.com

Hellen, N., Park, H., & Kim, K. -. (2018). Characterization of ZnO/TiO2 nanocomposites prepared via the sol-gel method. Journal of the Korean Ceramic Society, 55(2), 140-144. doi:10.4191/kcers.2018.55.2.10

Ho, K. C., Teow, Y. H., Mohammad, A. W., Ang, W. L., & Lee, P. H. (2018). Development of graphene oxide (GO)/multi-walled carbon nanotubes (MWCNTs) nanocomposite conductive membranes for electrically enhanced fouling mitigation. Journal of Membrane Science, 552, 189-201. doi:10.1016/j.memsci.2018.02.001

Hodkiewicz, J. (2010). Characterizing carbon materials with raman spectroscopy. Characterizing Carbon Materials with Raman Spectroscopy, Retrieved from www.scopus.com

Hosseini, F., Kasaeian, A., Pourfayaz, F., Sheikhpour, M., & Wen, D. (2018). Novel ZnO-Ag/MWCNT nanocomposite for the photocatalytic degradation of phenol. Materials Science in Semiconductor Processing, 83, 175-185. doi:10.1016/j.mssp.2018.04.042

Huang, F., Yan, A., & Zhao, H. (2016). Influences of doping on photocatalytic properties of TiO2 photocatalyst. Semiconductor Photocatalysis-Materials, Mechanisms and Applications, , 31-80. Retrieved from www.scopus.com

Huang, Y., Chen, D., Hu, X., Qian, Y., & Li, D. (2018). Preparation of TiO2/carbon nanotubes/reduced graphene oxide composites with enhanced photocatalytic activity for the degradation of rhodamine B. Nanomaterials, 8(6) doi:10.3390/nano8060431

Hummers, W. S., & Offeman, R. E. (1958). Preparation of graphitic oxide. J.Am.Chem.Soc., 208(1937) Retrieved from www.scopus.com

Ivanova, M. V., Lamprecht, C., Jimena Loureiro, M., Torin Huzil, J., & Foldvari, M. (2012). Pharmaceutical characterization of solid and dispersed carbon nanotubes as nanoexcipients. International Journal of Nanomedicine, 7, 403-415. Retrieved from www.scopus.com

Jiang, T., Zhang, L., Ji, M., Wang, Q., Zhao, Q., Fu, X., & Yin, H. (2013). Carbon nanotubes/TiO2 nanotubes composite photocatalysts for efficient degradation of methyl orange dye. Particuology, 11(6), 737-742. doi:10.1016/j.partic.2012.07.008

Kalpana, V. N., & Devi Rajeswari, V. (2018). A review on green synthesis, biomedical applications, and toxicity studies of ZnO NPs. Bioinorganic Chemistry and Applications, 2018 doi:10.1155/2018/3569758

Katheresan, V., Kansedo, J., & Lau, S. Y. (2018). Efficiency of various recent wastewater dye removal methods: A review. Journal of Environmental Chemical Engineering, 6(4), 4676-4697. doi:10.1016/j.jece.2018.06.060

Kaur, K., & Jeet, K. (2017). Electrical conductivity of water- based nanofluids prepared with graphene–carbon nanotube hybrid. Fullerenes Nanotubes and Carbon Nanostructures, 25(12), 726-734. doi:10.1080/1536383X.2017.1389906

Khan, Z., Chetia, T. R., Vardhaman, A. K., Barpuzary, D., Sastri, C. V., & Qureshi, M. (2012). Visible light assisted photocatalytic hydrogen generation and organic dye degradation by CdS-metal oxide hybrids in presence of graphene oxide. RSC Advances, 2(32), 12122-12128. doi:10.1039/c2ra21596a

Khojasteh, H., Salavati-Niasari, M., & Sangsefidi, F. S. (2018). Photocatalytic evaluation of RGO/TiO2NWs/Pd-ag nanocomposite as an improved catalyst for efficient dye degradation. Journal of Alloys and Compounds, 746, 611-618. doi:10.1016/j.jallcom.2018.02.345

Koay, H. W., Ruslinda, A. R., Hashwan, S. S. B., Fatin, M. F., Thivina, V., Tony, V. C. S., . . . Hashim, U. (2016). Surface morphology of reduced graphene oxide-carbon nanotubes hybrid film for bio-sensing applications. Paper presented at the IEEE International Conference on Semiconductor Electronics, Proceedings, ICSE, , 2016-September 320-323. doi:10.1109/SMELEC.2016.7573656 Retrieved from www.scopus.com

Kumar, A., Madaria, A. R., & Zhou, C. (2010). Growth of aligned single-crystalline rutile TiO2 nanowires on arbitrary substrates and their application in dye-sensitized solar cells. Journal of Physical Chemistry C, 114(17), 7787-7792. doi:10.1021/jp100491h

Kumar, S. G., & Rao, K. S. R. K. (2015). Zinc oxide based photocatalysis: Tailoring surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications. RSC Advances, 5(5), 3306-3351. doi:10.1039/c4ra13299h

Latthe, S. S., Gurav, A. B., Maruti, C. S., & Vhatkar, R. S. (2012). Recent progress in preparation of superhydrophobic surfaces: A review. J.Surf.Eng.Mater.Adv.Technol., 2(2), 76-94. Retrieved from www.scopus.com

Li Bassi, A., Cattaneo, D., Russo, V., Bottani, C. E., Barborini, E., Mazza, T., . . . Pratsinis, S. E. (2005). Raman spectroscopy characterization of titania nanoparticles produced by flame pyrolysis: The influence of size and stoichiometry. Journal of Applied Physics, 98(7) doi:10.1063/1.2061894

Liu, B., & Aydil, E. S. (2009). Growth of oriented single-crystalline rutile TiO 2 nanorods on transparent conducting substrates for dye-sensitized solar cells. Journal of the American Chemical Society, 131(11), 3985-3990. doi:10.1021/ja8078972

Liu, J., Wang, Y., Ma, J., Peng, Y., & Wang, A. (2019). A review on bidirectional analogies between the photocatalysis and antibacterial properties of ZnO. Journal of Alloys and Compounds, 783, 898-918. doi:10.1016/j.jallcom.2018.12.330

Liu, P., Cai, W., Fang, M., Li, Z., Zeng, H., Hu, J., . . . Jing, W. (2009). Room temperature synthesized rutile TiO2 nanoparticles induced by laser ablation in liquid and their photocatalytic activity. Nanotechnology, 20(28) doi:10.1088/0957-4484/20/28/285707

Liu, Y. (2017). Application of graphene oxide in water treatment. Paper presented at the IOP Conference Series: Earth and Environmental Science, , 94(1) doi:10.1088/1755-1315/94/1/012060 Retrieved from www.scopus.com

Ma, H. L., Yang, J. Y., Dai, Y., Zhang, Y. B., Lu, B., & Ma, G. H. (2007). Raman study of phase transformation of TiO 2 rutile single crystal irradiated by infrared femtosecond laser. Applied Surface Science, 253(18), 7497-7500. doi:10.1016/j.apsusc.2007.03.047

Mahmoodi, N. M. (2013). Photocatalytic degradation of dyes using carbon nanotube and titania nanoparticle. Water, Air, and Soil Pollution, 224(7) doi:10.1007/s11270-013-1612-3

Malek, M. F., Mamat, M. H., Soga, T., Rahman, S. A., Bakar, S. A., Ismail, A. S., . . . Mahmood, M. R. (2016). Thickness-controlled synthesis of vertically aligned c-axis oriented ZnO nanorod arrays: Effect of growth time via novel dual sonication sol-gel process. Japanese Journal of Applied Physics, 55(1) doi:10.7567/JJAP.55.01AE15

Mali, S. S., Shinde, P. S., Betty, C. A., Bhosale, P. N., Lee, W. J., & Patil, P. S. (2011). Nanocoral architecture of TiO 2 by hydrothermal process: Synthesis and characterization. Applied Surface Science, 257(23), 9737-9746. doi:10.1016/j.apsusc.2011.05.119

Maučec, D., Šuligoj, A., Ristić, A., Dražić, G., Pintar, A., & Tušar, N. N. (2018). Titania versus zinc oxide nanoparticles on mesoporous silica supports as photocatalysts for removal of dyes from wastewater at neutral pH. Catalysis Today, 310, 32-41. doi:10.1016/j.cattod.2017.05.061

Min, C., Liu, D., Shen, C., Zhang, Q., Song, H., Li, S., . . . Zhang, K. (2018). Unique synergistic effects of graphene oxide and carbon nanotube hybrids on the tribological properties of polyimide nanocomposites. Tribology International, 117, 217-224. doi:10.1016/j.triboint.2017.09.006

Mohd Adnan, M. A., Julkapli, N. M., & Abd Hamid, S. B. (2016). Review on ZnO hybrid photocatalyst: Impact on photocatalytic activities of water pollutant degradation. Reviews in Inorganic Chemistry, 36(2), 77-104. doi:10.1515/revic-2015-0015

Mokhtar, S. M., Ahmad, M. K., Soon, C. F., Nafarizal, N., Faridah, A. B., Suriani, A. B., . . . Murakami, K. (2018). Fabrication and characterization of rutile-phased titanium dioxide (TiO2) nanorods array with various reaction times using one step hydrothermal method. Optik, 154, 510-515. doi:10.1016/j.ijleo.2017.10.091

Morales-Torres, S., & Pastrana-Martínez, L. M. (2014). Nanostructured carbon–TiO2 photo-catalysts for water purification: An overview. El Bol.Del Grupo Español Del Carbón, 32, 9-14. Retrieved from www.scopus.com

Muda, M. R., Ramli, M. M., Mat Isa, S. S., Halin, D. S. C., Talip, L. F. A., Mazelan, N. S., . . . Danial, N. A. (2017). Structural and morphological investigation for water-processed graphene Oxide/Single-walled carbon nanotubes hybrids. Paper presented at the IOP Conference Series: Materials Science and Engineering, , 209(1) doi:10.1088/1757-899X/209/1/012030 Retrieved from www.scopus.com

Mulmi, D. D., Thapa, D., Dahal, B., Baral, D., & Solanki, P. R. (2016). Spectroscopic studies of boron doped titanium dioxide nanoparticles. Int.J.Mater.Sci.Eng., 4, 172-178. Retrieved from www.scopus.com

Naknikham, U., Boffa, V., Magnacca, G., Qiao, A., Jensen, L. R., & Yue, Y. (2017). Mutual-stabilization in chemically bonded graphene oxide-TiO2 heterostructures synthesized by a sol-gel approach. RSC Advances, 7(65), 41217-41227. doi:10.1039/c7ra07472g

Neelgund, G. M., & Oki, A. R. (2016). Influence of carbon nanotubes and graphene nanosheets on photothermal effect of hydroxyapatite. Journal of Colloid and Interface Science, 484, 135-145. doi:10.1016/j.jcis.2016.07.078

Nenavathu, B. P., Kandula, S., & Verma, S. (2018). Visible-light-driven photocatalytic degradation of safranin-T dye using functionalized graphene oxide nanosheet (FGS)/ZnO nanocomposites. RSC Advances, 8(35), 19659-19667. doi:10.1039/c8ra02237b

Nurhafizah, M. D., Suriani, A. B., Alfarisa, S., Mohamed, A., Isa, I. M., Kamari, A., . . . Mahmood, M. R. (2015). The synthesis of graphene oxide via electrochemical exfoliation method. Adv.Mater.Res., 1109, 55-59. Retrieved from www.scopus.com

Ong, C. B., Ng, L. Y., & Mohammad, A. W. (2018). A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renewable and Sustainable Energy Reviews, 81, 536-551. doi:10.1016/j.rser.2017.08.020

Poorebrahimi, S., & Norouzbeigi, R. (2015). A facile solution-immersion process for the fabrication of superhydrophobic gibbsite films with a binary micro-nano structure: Effective factors optimization via taguchi method. Applied Surface Science, 356, 157-166. doi:10.1016/j.apsusc.2015.07.172

Prathan, A., Sanglao, J., Wang, T., Bhoomanee, C., Ruankham, P., Gardchareon, A., & Wongratanaphisan, D. (2020). Controlled structure and growth mechanism behind hydrothermal growth of TiO2 nanorods. Scientific Reports, 10(1) doi:10.1038/s41598-020-64510-6

Qi, K., Cheng, B., Yu, J., & Ho, W. (2017). Review on the improvement of the photocatalytic and antibacterial activities of ZnO. Journal of Alloys and Compounds, 727, 792-820. doi:10.1016/j.jallcom.2017.08.142

Qiu, J., Zhang, P., Ling, M., Li, S., Liu, P., Zhao, H., & Zhang, S. (2012). Photocatalytic synthesis of TiO 2 and reduced graphene oxide nanocomposite for lithium ion battery. ACS Applied Materials and Interfaces, 4(7), 3636-3642. doi:10.1021/am300722d

Raliya, R., Avery, C., Chakrabarti, S., & Biswas, P. (2017). Photocatalytic degradation of methyl orange dye by pristine titanium dioxide, zinc oxide, and graphene oxide nanostructures and their composites under visible light irradiation. Applied Nanoscience (Switzerland), 7(5), 253-259. doi:10.1007/s13204-017-0565-z

Steplin Paul Selvin, S., Radhika, N., Borang, O., Sharmila Lydia, I., & Princy Merlin, J. (2017). Visible light driven photodegradation of rhodamine B using cysteine capped ZnO/GO nanocomposite as photocatalyst. Journal of Materials Science: Materials in Electronics, 28(9), 6722-6730. doi:10.1007/s10854-017-6367-y


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.