UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :article
Subject :Q Science (General)
ISSN :0126-6039
Main Author :Shazlyn Milleana Shaharudin
Additional Authors :Muhamad Afdal Ahmad Basri
Title :Prediction of epidemic trends in covid-19 with mann-kendall and recurrent forecasting-singular spectrum analysis
Place of Production :Tanjung Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2021
Notes :Sains Malaysiana
Corporate Name :Universiti Pendidikan Sultan Idris
HTTP Link :Click to view web link

Abstract : Universiti Pendidikan Sultan Idris
Novel coronavirus also known as COVID-19 was first discovered in Wuhan, China by end of 2019. Since then, the virus has claimed millions of lives worldwide. In 29th April 2020, there were more than 5,000 outbreak cases in Malaysia as reported by the Ministry of Health Malaysia (MOHE). This study aims to evaluate the trend analysis of the COVID-19 outbreak using Mann-Kendall test, and predict the future cases of COVID-19 in Malaysia using Recurrent Forecasting-Singular Spectrum Analysis (RF-SSA) model. The RF-SSA model was developed to measure and predict daily COVID-19 cases in Malaysia for the coming 10 days using previously-confi rmed cases. A Singular Spectrum Analysis-based forecasting model that discriminates noise in a time series trend is introduced. The RF-SSA model assessment is based on the World Health Organization (WHO) offi cial COVID-19 data to predict the daily confi rmed cases after 29th April until 9th May, 2020. The preliminary results of Mann-Kendall test showed a declining trend pattern for new cases during Restricted Movement Order (RMO) 3 compared to RMO1, RMO2 and RMO4, with a dramatic increase in the COVID-19 outbreak during RMO1. Overall, the RF-SSA has over-forecasted the cases by 0.36%. This indicates RF-SSA s competence to predict the impending number of COVID-19 cases. The proposed model predicted that Malaysia would hit single digit in daily confirmed cased of COVID-19 by early-June 2020. These findings have proven the capability of RF-SSA model in apprehending the trend and predict the cases of COVID-19 with high accuracy. Nevertheless, enhanced RF-SSA algorithm should to be developed for higher effectivity in capturing any extreme data changes. ? 2021 Penerbit Universiti Kebangsaan Malaysia. All rights reserved.

References

Abdullah, S., Mansor, A. A., Napi, N. N. L. M., Mansor, W. N. W., Ahmed, A. N., Ismail, M., & Ramly, Z. T. A. (2020). Air quality status during 2020 malaysia movement control order (MCO) due to 2019 novel coronavirus (2019-nCoV) pandemic. Science of the Total Environment, 729 doi:10.1016/j.scitotenv.2020.139022

Alexandrov, T., Golyandina, N., & Spirov, A. (2008). Singular spectrum analysis of gene expression profiles of early drosophila embryo: Exponential-in-distance patterns. Res Lett Signal Process, 2008, 1-5. Retrieved from www.scopus.com

Alonso, F. J., Salgado, D. R., Cuadrado, J., & Pintado, P. (2009). Automatic smoothing of raw kinematics signals using ssa and cluster analysis. Euromech Solid Mechanics Conference Lisbon, Portugal, , 1-9. Retrieved from www.scopus.com

Ariffin, M. R. K., Gopal, K., Krishnarajah, I., Ilias, I. S. C., Adam, M. B., Sham, N. M., . . . Dom, N. S. M. (2020). Malaysian COVID-19 Outbreak Data Analysis and Prediction, Retrieved from www.scopus.com

Boehmke, B., & Greenwell, B. M. (2019). Hands-on machine learning using R. Hands-on Machine Learning with R, Retrieved from www.scopus.com

Bouza-Deaño, R., Ternero-Rodríguez, M., & Fernández-Espinosa, A. J. (2008). Trend study and assessment of surface water quality in the ebro river (spain). Journal of Hydrology, 361(3-4), 227-239. doi:10.1016/j.jhydrol.2008.07.048

Carvalho, M. D., & Rua, A. (2014). Real-Time Nowcasting the US Output GAP: Singular Spectrum Analysis at Work, Retrieved from www.scopus.com

Chau, K. W., & Wu, C. L. (2010). A hybrid model coupled with singular spectrum analysis for daily rainfall prediction. Journal of Hydroinformatics, 12(4), 458-473. doi:10.2166/hydro.2010.032

Danilov, D. (1997). The caterpillar method for time series forecasting. Principal Components of Time Series: The Caterpillar Method, , 73-104. Retrieved from www.scopus.com

Gilbert, R. O. (1987). Statistical Methods for Environmental Pollution Monitoring, Retrieved from www.scopus.com

Hamzah, F. M., Saimi, F. M., & Jaafar, O. (2017). Identifying the monotonic trend in climate change parameter in kluang and senai, johor, malaysia. Sains Malaysiana, 46(10), 1735-1741. doi:10.17576/jsm-2017-4610-09

Hassani, H. (2007). Singular spectrum analysis: Methodology and comparison. Journal of Data Science, 5(2), 239-257. Retrieved from www.scopus.com

Hassani, H., Kalantari, M., & Yarmohammadi, M. (2017). An improved SSA forecasting result based on a filtered recurrent forecasting algorithm. [Un algorithme de prévision SSA amélioré reposant sur des séries filtrées] Comptes Rendus Mathematique, 355(9), 1026-1036. doi:10.1016/j.crma.2017.09.004

Hassani, H., & Zhigljavsky, A. (2009). Singular spectrum analysis: Methodology and application to economics data. Journal of Systems Science and Complexity, 22(3), 372-394. doi:10.1007/s11424-009-9171-9

Kannan, S., Shaik Syed Ali, P., Sheeza, A., & Hemalatha, K. (2020). COVID-19 (novel coronavirus 2019) - recent trends. European Review for Medical and Pharmacological Sciences, 24(4), 2006-2011. doi:10.26355/eurrev_202002_20378

Kendall, M. G. (1975). Rank Correlation Measures, , 220. Retrieved from www.scopus.com

Malaysian National Security Council (NSC). (2020). Movement control order (MCO). Movement Control Order (MCO), Retrieved from www.scopus.com

Mann, H. B. (1945). Nonparametric tests against trend. Econometrica, 13, 245-259. Retrieved from www.scopus.com

Mondal, A., Kundu, S., & Mukhopadhyay, A. (2012). Rainfall trend analysis by mann-kendall test: A case study of north-eastern part of cuttack district, orissa. International Journal of Geology, Earth and Environmental Sciences, 2(1), 70-78. Retrieved from www.scopus.com

Nishiura, H., Kobayashi, T., Yang, Y., Hayashi, K., Miyama, T., Kinoshita, R., . . . Akhmetzhanov, A. R. (2020). The rate of underascertainment of novel coronavirus (2019‐ncov) infection: Estimation using japanese passengers data on evacuation flights. Journal of Clinical Medicine, 9(2) doi:10.3390/jcm9020419

Rodryguez-Aragon, L., & Zhigljavsky, A. (2010). Singular spectrum analysis for image processing. Statistics and its Interface, 3(3), 419-426. Retrieved from www.scopus.com

Samsudin, M. S., Khalit, S. I., Juahir, H., Nasir, M. F. M., Kamarudin, M. K. A., & Lananan, F. (2017). Application of mann-kendall in analyzing water quality data trend at perlis river, malaysia. International Journal on Advanced Science, Engineering and Information Technology, 7(1), 78-85. doi:10.18517/ijaseit.7.1.1128

Sen, P. K. (1968). Estimates of the regression coefficient based on kendall's tau. Journal of the American Statistical Association, 63(324), 1379-1389. doi:10.1080/01621459.1968.10480934

Shaharudin, S. M., Ahmad, N., Mohamed, N. S., & Aziz, N. (2020). Performance analysis and validation of modified singular spectrum analysis based on simulation torrential rainfall data. International Journal on Advanced Science, Engineering and Information Technology, 10(4), 1450-1456. doi:10.18517/ijaseit.10.4.11653

Shaharudin, S. M., Ahmad, N., & Yusof, F. (2015). Effect of window length with singular spectrum analysis in extracting the trend signal on rainfall data. Paper presented at the AIP Conference Proceedings, , 1643 321-326. doi:10.1063/1.4907462 Retrieved from www.scopus.com

Shaharudin, S. M., Ahmad, N., & Zainuddin, N. H. (2019). Modified singular spectrum analysis in identifying rainfall trend over peninsular malaysia. Indonesian Journal of Electrical Engineering and Computer Science, 15(1), 283-293. doi:10.11591/ijeecs.v15.i1.pp283-293

Suhartono, Ashari, D. E., Prastyo, D. D., Kuswanto, H., & Lee, M. H. (2019). Deep neural network for forecasting inflow and outflow in indonesia. Sains Malaysiana, 48(8), 1787-1798. doi:10.17576/jsm-2019-4808-26

Tang, B., Wang, X., Li, Q., Bragazzi, N. L., Tang, S., Xiao, Y., & Wu, J. (2020). Estimation of the transmission risk of the 2019-nCoV and its implication for public health interventions. Journal of Clinical Medicine, 9(2) doi:10.3390/jcm9020462

Thompson, R. N. (2020). Novel coronavirus outbreak in wuhan, china, 2020: Intense surveillance is vital for preventing sustained transmission in new locations. Journal of Clinical Medicine, 9(2) doi:10.3390/jcm9020498

Zhao, S., Musa, S. S., Lin, Q., Ran, J., Yang, G., Wang, W., . . . Wang, M. H. (2020). Estimating the unreported number of novel coronavirus (2019-ncov) cases in china in the first half of january 2020: A data-driven modelling analysis of the early outbreak. Journal of Clinical Medicine, 9(2) doi:10.3390/jcm9020388


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.