UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
The composites of hydroxyapatite/collagen (HA/Col) were seen to be the most encouraging bone graft because of the likenesses with the natural bones .The aim of the present study was to prepared the fish scales hydroxyapatite/collagen /silver nanoparticles (FsHA/FsCol/AgNPs) as a beads by using infiltration method. FsHA/FsCol/AgNPs composites beads were prepared by using new method (infiltration), including to infiltrated of FsHA beads in the FsCol-AgNPs solution. The composites beads of the FsHA/FsCol have been modified by incorporated with AgNPs. The chemical-physical properties for the prepared beads have been evaluated by using fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive x-ray analysis (EDX) and x ray diffraction analysis (XRD). The results had revealed that by using XRD and FTIR analysis, the peaks of functional groups of FsCol and AgNPs were observed in the matrix of the beads. FESEM had shown the morphology of beads with intact to the availability of AgNPs on the surface of porous structure. The beads morphology demonstrated a homogeneous surface with AgNPs scattered in the matrix. ? Malaysian Journal of Microscopy (2021). |
References |
Abifarin, J. K., Obada, D. O., Dauda, E. T., & Dodoo-Arhin, D. (2019). Experimental data on the characterization of hydroxyapatite synthesized from biowastes. Data in Brief, 26 doi:10.1016/j.dib.2019.104485 Alparslan, Y., Baygar, T., & Baygar, T. (2017). Extraction, characterization and antimicrobial activity of hydroxyaptite from seabass and seabrem scale. J.of Food and Health Sci, 3(3), 90-96. Retrieved from www.scopus.com Aziz, J., Ahmad, M. F., Rahman, M. T., Yahya, N. A., Czernuszka, J., & Radzi, Z. (2018). AFM analysis of collagen fibrils in expanded scalp tissue after anisotropic tissue expansion. International Journal of Biological Macromolecules, 107(PartA), 1030-1038. doi:10.1016/j.ijbiomac.2017.09.066 Borciani, G., Montalbano, G., Baldini, N., Cerqueni, G., Vitale-Brovarone, C., & Ciapetti, G. (2020). Co–culture systems of osteoblasts and osteoclasts: Simulating in vitro bone remodeling in regenerative approaches. Acta Biomaterialia, 108, 22-45. doi:10.1016/j.actbio.2020.03.043 Chinh, N. T., Manh, V. Q., Trung, V. Q., Lam, T. D., Huynh, M. D., Tung, N. Q., . . . Hoang, T. (2019). Characterization of collagen derived from tropical freshwater carp fish scale wastes and its amino acid sequence. Natural Product Communications, 14(7) doi:10.1177/1934578X19866288 Devaraj, P., Kumari, P., Aarti, C., & Renganathan, A. (2013). Synthesis and characterization of silver nanoparticles using cannonball leaves and their cytotoxic activity against MCF-7 cell line. Journal of Nanotechnology, 2013 doi:10.1155/2013/598328 Dutta, S. R., Passi, D., Singh, P., & Bhuibhar, A. (2015). Ceramic and non-ceramic hydroxyapatite as a bone graft material: A brief review. Irish Journal of Medical Science, 184(1), 101-106. doi:10.1007/s11845-014-1199-8 Granito, R. N., Renno, A. C. M., Yamamura, H., de Almeida, M. C., Ruiz, P. L. M., & Ribeiro, D. A. (2018). Hydroxyapatite from fish for bone tissue engineering: A promising approach. International Journal of Molecular and Cellular Medicine, 7(2), 80-90. doi:10.22088/IJMCM.BUMS.7.2.80 Liao, W., Guanghua, X., Li, Y., Shen, X. R., & Li, C. (2018). Comparison of characteristics and fibril-forming ability of skin collagen from barramundi (lates calcarifer) and tilapia (oreochromis niloticus). International Journal of Biological Macromolecules, 107(PartA), 549-559. doi:10.1016/j.ijbiomac.2017.09.022 Lin, F., Wang, X., Wang, Y., Yang, Y., & Li, Y. (2017). Preparation and biocompatibility of electrospinning PDLLA/β-TCP/collagen for peripheral nerve regeneration. RSC Advances, 7(66), 41593-41602. doi:10.1039/c7ra05966c Lu, Z., Liu, S., Le, Y., Qin, Z., He, M., Xu, F., . . . Zheng, L. (2019). An injectable collagen-genipin-carbon dot hydrogel combined with photodynamic therapy to enhance chondrogenesis. Biomaterials, 218 doi:10.1016/j.biomaterials.2019.05.001 Martins, A. M., Alves, C. M., Kurtis Kasper, F., Mikos, A. G., & Reis, R. L. (2010). Responsive and in situ-forming chitosan scaffolds for bone tissue engineering applications: An overview of the last decade. Journal of Materials Chemistry, 20(9), 1638-1645. doi:10.1039/b916259n Mondal, S., Mondal, B., Dey, A., & Mukhopadhyay, S. S. (2012). Studies on processing and characterization of hydroxyapatite biomaterials from different bio wastes. J.Miner.Mater.Charact.Eng., 11(1), 55-67. Retrieved from www.scopus.com Morra, M., Giavaresi, G., Sartori, M., Ferrari, A., Parrilli, A., Bollati, D., . . . Fini, M. (2015). Surface chemistry and effects on bone regeneration of a novel biomimetic synthetic bone filler. Journal of Materials Science: Materials in Medicine, 26(4) doi:10.1007/s10856-015-5483-6 Mudhafar, M., Zainol, I., Alsailawi, H., & Aiza Jaafar, C. (2021). Synthesis and characterization of fish scales of hydroxyapatite/collagen-silver nanoparticles composites for the applications of bone filler. J Korean Ceramic Soc, 12, 1-1. Retrieved from www.scopus.com Muhammad, N., Gao, Y., Iqbal, F., Ahmad, P., Ge, R., Nishan, U., . . . Ullah, Z. (2016). Extraction of biocompatible hydroxyapatite from fish scales using novel approach of ionic liquid pretreatment. Separation and Purification Technology, 161, 129-135. doi:10.1016/j.seppur.2016.01.047 Pati, F., Adhikari, B., & Dhara, S. (2010). Isolation and characterization of fish scale collagen of higher thermal stability. Bioresource Technology, 101(10), 3737-3742. doi:10.1016/j.biortech.2009.12.133 Rafat, M., Xeroudaki, M., Koulikovska, M., Sherrell, P., Groth, F., Fagerholm, P., & Lagali, N. (2016). Composite core-and-skirt collagen hydrogels with differential degradation for corneal therapeutic applications. Biomaterials, 83, 142-155. doi:10.1016/j.biomaterials.2016.01.004 Riaz, T., Zeeshan, R., Zarif, F., Ilyas, K., Muhammad, N., Safi, S. Z., . . . Rehman, I. U. (2018). FTIR analysis of natural and synthetic collagen. Applied Spectroscopy Reviews, 53(9), 703-746. doi:10.1080/05704928.2018.1426595 Sari, N. K., Indrani, D. J., Johan, C., & Corputty, J. E. M. (2017). Evaluation of chitosan-hydroxyapatite-collagen composite strength as scaffold material by immersion in simulated body fluid. Paper presented at the Journal of Physics: Conference Series, , 884(1) doi:10.1088/1742-6596/884/1/012116 Retrieved from www.scopus.com Saxena, A., Tripathi, R. M., Zafar, F., & Singh, P. (2012). Green synthesis of silver nanoparticles using aqueous solution of ficus benghalensis leaf extract and characterization of their antibacterial activity. Materials Letters, 67(1), 91-94. doi:10.1016/j.matlet.2011.09.038 Sena, L. A., Caraballo, M. M., Rossi, A. M., & Soares, G. A. (2009). Synthesis and characterization of biocomposites with different hydroxyapatite-collagen ratios. Journal of Materials Science: Materials in Medicine, 20(12), 2395-2400. doi:10.1007/s10856-009-3813-2 Sobanko, J. F., Portilla, N., Etzkorn, J., Shin, T., & Miller, C. J. (2018). Repair of a hemiforehead defect with exposed bone. Dermatologic Surgery, 44(12), 1587-1590. doi:10.1097/DSS.0000000000001233 Suchý, T., Bartoš, M., Sedláček, R., Šupová, M., Žaloudková, M., Martynková, G. S., & Foltán, R. (2021). Various simulated body fluids lead to significant differences in collagen tissue engineering scaffolds. Materials, 14(16) doi:10.3390/ma14164388 Tal, R., Kisa, J., Abuwala, N., Kliman, H. J., Shaikh, S., Chen, A. Y., . . . Taylor, H. S. (2021). Bone marrow-derived progenitor cells contribute to remodeling of the postpartum uterus. Stem Cells, 39(11), 1489-1505. doi:10.1002/stem.3431 Villa, M. M., Wang, L., Rowe, D. W., & Wei, M. (2014). Effects of cell-attachment and extracellular matrix on bone formation in vivo in collagen-hydroxyapatite scaffolds. PLoS ONE, 9(10) doi:10.1371/journal.pone.0109568 Weivoda, M. M., Chew, C. K., Monroe, D. G., Farr, J. N., Atkinson, E. J., Geske, J. R., . . . Khosla, S. (2020). Identification of osteoclast-osteoblast coupling factors in humans reveals links between bone and energy metabolism. Nature Communications, 11(1) doi:10.1038/s41467-019-14003-6 Xu, M., McCanna, D. J., & Sivak, J. G. (2015). Use of the viability reagent PrestoBlue in comparison with alamarBlue and MTT to assess the viability of human corneal epithelial cells. Journal of Pharmacological and Toxicological Methods, 71, 1-7. doi:10.1016/j.vascn.2014.11.003 Ye, H., Liu, X. Y., & Hong, H. (2009). Characterization of sintered titanium/hydroxyapatite biocomposite using FTIR spectroscopy. Journal of Materials Science: Materials in Medicine, 20(4), 843-850. doi:10.1007/s10856-008-3647-3 Yelten-Yilmaz, A., & Yilmaz, S. (2018). Wet chemical precipitation synthesis of hydroxyapatite (HA) powders. Ceramics International, 44(8), 9703-9710. doi:10.1016/j.ceramint.2018.02.201 Yoshida, S., Sudo, T., Niimi, M., Tao, L., Sun, B., Kambayashi, J., . . . Matsuoka, H. (2008). Inhibition of collagen-induced platelet aggregation by anopheline antiplatelet protein, a saliva protein from a malaria vector mosquito. Blood, 111(4), 2007-2014. doi:10.1182/blood-2007-06-097824 Zhou, C., Ye, X., Fan, Y., Ma, L., Tan, Y., Qing, F., & Zhang, X. (2014). Biomimetic fabrication of a three-level hierarchical calcium phosphate/collagen/hydroxyapatite scaffold for bone tissue engineering. Biofabrication, 6(3) doi:10.1088/1758-5082/6/3/035013 Zhou, H., Lawrence, J. G., & Bhaduri, S. B. (2012). Fabrication aspects of PLA-CaP/PLGA-CaP composites for orthopedic applications: A review. Acta Biomaterialia, 8(6), 1999-2016. doi:10.1016/j.actbio.2012.01.031 |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |