UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
The potentiality of Pt and MoO3 loading on HBEA zeolite in enhancing n-heptane isomerization was investigated. The multiple characterization techniques revealed the engagement of Pt and MoO3 on the lattice or defect structures of the HBEA framework. Furthermore, the occurrence of dealumination was confirmed by the existence of hydrated aluminium-molybdate, Al2-(MoO4)3. These findings proposed the presence of strong metal-support interactions. The n-heptane isomerization was comparatively investigated over Pt and MoO3 modified catalysts, and significantly higher rate of n-heptane conversion (0.059 ?mol/g-cat m2 s) and rate of iso-heptane formation (0.026 ?mol/g-cat m2 s) were achieved with Pt/MoO3-HBEA catalyst. The catalytic performance followed the order of Pt/MoO3-HBEA > MoO3-HBEA > Pt-HBEA > HBEA. It is anticipated that the results of in-situ FTIR studies of low-temperature hydrogen adsorption and n-heptane adsorption analyses help elucidate the isomerization mechanism and indicated there was a prerequisite for the presence of both Pt and MoO3 as dissociation and adsorption active sites for enhanced n-heptane isomerization. This study sheds light on the design of new type of MoO3 based catalysts for isomerization reaction. ? 2021 Elsevier B.V. |
References |
A. Dhar, A. Dutta, P. Sharma, B. Panda, S. Roy, Synthesis and characterization of solid-phase super acid catalysts and their application for isomerization of nalkanes, Chem. Eng. Commun. 204 (2017) 1341–1356, https://doi.org/10.1080/ 00986445.2017.1365059. N. de la Fuente, J.A. Wang, L.F. Chen, J. Gonz´ alez, J. Salmones, J.L. Contreras, J. Navarrete, Skeletal isomerization of n-heptane with highly selective Pt/ H3PW12O40/SBA–15 trifunctional catalysts, Catal. Commun. 102 (2017) 93–97, https://doi.org/10.1016/j.catcom.2017.08.030. N. Musselwhite, K. Na, K. Sabyrov, S. Alayoglu, G.A. Somorjai, Mesoporous aluminosilicate catalysts for the selective isomerization of n-Hexane: the roles of surface acidity and platinum metal, J. Am. Chem. Soc. 137 (2015) 10231–10237, https://doi.org/10.1021/jacs.5b04808. S.-U. Lee, Y.-J. Lee, J.-R. Kim, S.-Y. Jeong, Tactical control of Ni-loading over Wsupported Beta zeolite catalyst for selective ring opening of 1-methylnaphthalene, J. Ind. Eng. Chem. 66 (2018) 279–287, https://doi.org/10.1016/j. jiec.2018.05.042. J. Valyon, G. Polczmann, ¨ M. Koll´ ar, J. Hancsok, ´ Pore size and acidity effects on the catalytic activity in the hydroisomerization and hydrocracking of Fischer-Tropsch wax, Top. Chem. Mat. Sci. 6 (2011) 139–153. W. Thybaut, C.S.L. Narasimhan, J.F. Denayer, G.V. Baron, P.A. Jacobs, J. A. Martens, G.B. Marin, Acid-metal balance of a hydrocracking catalyst: ideal versus nonideal behavior, Ind. Eng. Chem. Res. 44 (2005) 5159–5169, https://doi. org/10.1021/ie049375+. K. Sabyrov, N. Musselwhite, G. Melaet, G.A. Somorjai, Hydroisomerization of nhexadecane: remarkable selectivity of mesoporous silica post-synthetically modified with aluminum, Catal. Sci. Technol. 7 (2017) 1756–1765, https://doi. org/10.1039/C7CY00203C. S.K. Saxena, N. Viswanadham, M.O. Garg, Porosity and acidity patterns of steam treated BEA zeolite material for enhanced catalytic isomerization of naphtha, J. Ind. Eng. Chem. 20 (2014) 3875–3883, https://doi.org/10.1016/j. jiec.2013.12.093. N. Batalha, L. Pinard, C. Bouchy, E. Guillon, M. Guisnet, n-Hexadecane hydroisomerization over Pt-HBEA catalysts. Quantification and effect of the intimacy between metal and protonic sites, J. Catal. 307 (2013) 122–131, https:// doi.org/10.1016/j.jcat.2013.07.014. C.A.A. Monteiro, D. Costa, J.L. Zotin, D. Cardoso, Effect of metal–acid site balance on hydroconversion of decalin over Pt/Beta zeolite bifunctional catalysts, Fuel 160 (2015) 71–79, https://doi.org/10.1016/j.fuel.2015.07.054. A. de Lucas, P. Sanchez, ´ F. Dorado, M.J. Ramos, J.L. Valverde, Effect of the metal loading in the hydroisomerization of n-octane over beta agglomerated zeolite based catalysts, Appl. Catal. Gen. 294 (2005) 215–225, https://doi.org/10.1016/j. apcata.2005.07.035. P. Maki-Arvela, ¨ T. Kaka khel, M. Azkaar, S. Engblom, D. Murzin, Catalytic hydroisomerization of long-chain hydrocarbons for the production of fuels, Catalysts 8 (2018) 534–561, https://doi.org/10.3390/catal8110534. P. Liu, X. Zhang, Y. Yao, J. Wang, Alkaline earth metal ion-exchanged β zeolite supported Pt catalysts for hydroisomerization of n-heptane, React. Kinet. Mech. Catal. 100 (2010) 217–226, https://doi.org/10.1007/s11144-010-0180-4. A. Chakrabarti, I.E. Wachs, Molecular structure–reactivity relationships for olefin metathesis by Al2O3-supported surface MoOx sites, ACS Catal. 8 (2018) 949–959, https://doi.org/10.1021/acscatal.7b03598. J. Gao, Y. Zheng, J.-M. Jehng, Y. Tang, I.E. Wachs, S.G. Podkolzin, Identification of molybdenum oxide nanostructures on zeolites for natural gas conversion, Science 348 (2015) 686–690, https://doi.org/10.1126/science.aaa7048. C. Liu, W. Wang, Y. Xu, Z. Li, B. Wang, X. Ma, Effect of zirconia morphology on sulfur-resistant methanation performance of MoO3/ZrO2 catalyst, Appl. Surf. Sci. 441 (2018) 482–490, https://doi.org/10.1016/j.apsusc.2018.02.019. L. Karuppasamy, C.Y. Chen, S. Anandan, J.J. Wu, High index surfaces of Aunanocrystals supported on one-dimensional MoO3-nanorod as a bi-functional electrocatalyst for ethanol oxidation and oxygen reduction, Electrochim. Acta 246 (2017) 75–88, https://doi.org/10.1016/j.electacta.2017.06.040. L.O. Alem´ an-V´ azquez, F. Hern´ andez-P´erez, J.L. Cano-Domínguez, A. RodríguezHern´ andez, J.L. García-Guti´errez, Binder effect on the catalytic activity of MoO3 bulk catalyst reduced by H2 for n-heptane hydroisomerization, Fuel 117 (2014) 463–469, https://doi.org/10.1016/j.fuel.2013.08.085. S.O. Omarov, E.A. Vlasov, D.A. Sladkovskiy, K.V. Semikin, A.N. Matveyeva, S. P. Fedorov, G.V. Oganesyan, D.Y. Murzin, Physico-chemical properties of MoO3/ ZrO2 catalysts prepared by dry mixing for isobutane alkylation and butene transformations, Appl. Catal. B Environ. 230 (2018) 246–259, https://doi.org/ 10.1016/j.apcatb.2018.02.020. E. Vyskoˇcilov´ a, L. Sekerova, ´ I. Paterov´ a, J. Krupka, M. Veselý, L. Cervený, ˇ Characterization and use of MoO3 modified alumosilicates in Prins cyclization of isoprenol and isovaleraldehyde, J. Porous Mater. 25 (2017) 273–281, https://doi. org/10.1007/s10934-017-0440-z. M. Kolodziej, E. Lalik, J.C. Colmenares, P. Lisowski, J. Gurgul, D. Duraczynska, ´ A. Drelinkiewicz, Physicochemical and catalytic properties of Pd/MoO3 prepared by the sonophotodeposition method, Mater. Chem. Phys. 204 (2018) 361–372, https://doi.org/10.1016/j.matchemphys.2017.10.060. H. Sakagami, T. Ohno, H. Itoh, Z. Li, N. Takahashi, T. Matsuda, Physical and catalytic properties of Pt/MoO3 reduced at different H2 flow rates, Appl. Catal. Gen. 470 (2014) 8–14, https://doi.org/10.1016/j.apcata.2013.10.020. M. Fedyna, M. Sliwa, ´ K. Jaroszewska, J. Trawczynski, ´ Effect of zeolite amount on the properties of Pt/(AlSBA-15 + Beta zeolite) micro-mesoporous catalysts for the hydroisomerization of n-heptane, Fuel 280 (2020) 118607, https://doi.org/ 10.1016/j.fuel.2020.118607. J. Harmel, T. Roberts, Z. Zhang, G. Sunley, P. de Jongh, K.P. de Jong, Bifunctional molybdenum oxide/acid catalysts for hydroisomerization of n-heptane, J. Catal. 390 (2020) 161–169, https://doi.org/10.1016/j.jcat.2020.08.004. J. Harmel, L.I. van der Wal, J. Zeˇcevi´c, P.E. de Jongh, K.P. de Jong, Influence of intimacy for metal-mesoporous solid acids catalysts for n-alkanes hydroconversion, Catal. Sci. Technol. 10 (2020) 2111–2119, https://doi.org/10.1039/ c9cy02510c. Z. Guo, X. Li, S. Hu, G. Ye, X. Zhou, M.O. Coppens, Understanding the role of internal diffusion barriers in Pt/Beta zeolite catalyzed isomerization of n-heptane, Angew. Chem., Int. Ed. Engl. 59 (2020) 1548–1551, https://doi.org/10.1002/ anie.201913660. Y. Wang, X. Dong, Y. Cui, S. Ma, Y. Suo, W. Zhang, Synthesis of Mo-MCM-48 and their isomerization performances of n-heptane, J. Porous Mater. (2019) 1–8, https://doi.org/10.1007/s10934-019-00727-9. L. Gao, U.J. Etim, Z. Shi, W. Xing, P. Wu, D. Han, P. Bai, Z. Yan, Predicting catalytic performance of micro-mesoporous Pt/Beta-KIT-6 catalyst in n-heptane hydroisomerization using indexed isomerization factor and experimental verification, Ind. Eng. Chem. Res. 58 (2019) 5146–5157, https://doi.org/10.1021/ acs.iecr.8b06107. M.H. Peyrovi, N. Parsafard, H.R. Anajafi, Catalytic performance of micromesoporous materials as the supports for Pt catalysts in n-heptane isomerization, Chem. Phys. Lett. 713 (2018) 32–38, https://doi.org/10.1016/j. cplett.2018.10.005. N. Parsafard, M.H. Peyrovi, M. Jarayedi, Catalytic study and kinetic modelling of the n-heptane isomerization over Pt/Al-HMS/HZSM-5 hybrid catalysts, Energy Fuels 31 (2017) 6389–6396, https://doi.org/10.1021/acs.energyfuels.7b00657. N.A.A. Fatah, S. Triwahyono, A.A. Jalil, N. Salamun, C.R. Mamat, Z.A. Majid, nHeptane isomerization over molybdenum supported on bicontinuous concentric lamellar silica KCC-1: influence of phosphorus and optimization using response surface methodology (RSM), Chem. Eng. J. 314 (2017) 650–659, https://doi.org/ 10.1016/j.cej.2016.12.028. T.M.N. Albayati, S.E. Wilkinson, A.A. Garforth, A.M. Doyle, Heterogeneous alkane reactions over nanoporous catalysts, Transport Porous Media 104 (2014) 315–333, https://doi.org/10.1007/s11242-014-0336-1. N.H.N. Kamarudin, A.A. Jalil, S. Triwahyono, R.R. Mukti, M.A.A. Aziz, H. D. Setiabudi, M.N.M. Muhid, H. Hamdan, Interaction of Zn2+ with extraframework aluminum in HBEA zeolite and its role in enhancing n-pentane isomerization, Appl. Catal. Gen. 431–432 (2012) 104–112, https://doi.org/10.1016/j. apcata.2012.04.020. G.S. Foo, A.K. Rogers, M.M. Yung, C. Sievers, Steric effect and evolution of surface species in the hydrodeoxygenation of bio-oil model compounds over Pt/HBEA, ACS Catal. 6 (2016) 1292–1307, https://doi.org/10.1021/acscatal.5b02684. N.H.R. Annuar, A.A. Jalil, S. Triwahyono, Z. Ramli, Relating cumene hydrocracking activity to the acidic center of CrO3–ZrO2, J. Mol. Catal. A: Chem. 377 (2013) 162–172, https://doi.org/10.1016/j.molcata.2013.05.008. H. Sun, X. Huang, F. Wang, Z. Gu, Impact of acidic properties of HBEA zeolite on isomerization of 1-methylnaphthalene, Res. Chem. Intermed. 43 (2017) 4697–4710, https://doi.org/10.1007/s11164-017-2905-8. N.N.M. Ghani, A.A. Jalil, S. Triwahyono, M.A.A. Aziz, A.F.A. Rahman, M.Y. S. Hamid, S.M. Izan, M.G.M. Nawawi, Tailored mesoporosity and acidity of shapeselective fibrous silica beta zeolite for enhanced toluene co-reaction with methanol, Chem. Eng. Sci. 193 (2019) 217–229, https://doi.org/10.1016/j. ces.2018.09.009. S.M. Izan, S. Triwahyono, A.A. Jalil, Z.A. Majid, N.A.A. Fatah, M.Y.S. Hamid, M. Ibrahim, Additional Lewis acid sites of protonated fibrous silica@BEA zeolite (HSi@BEA) improving the generation of protonic acid sites in the isomerization of C6 alkane and cycloalkanes, Appl. Catal. Gen. 570 (2019) 228–237, https://doi. org/10.1016/j.apcata.2018.11.028. P. Padmaja, G.M. Anilkumar, P. Mukundan, G. Aruldhas, K.G.K. Warrier, Characterisation of stoichiometric sol–gel mullite by fourier transform infrared spectroscopy, Int. J. Inorg. Mater. 3 (2001) 693–698, https://doi.org/10.1016/ S1466- 6049(01)00189-1. D. Esquivel, A.J. Cruz-Cabeza, C. Jim´enez-Sanchidri´ an, F.J. Romero-Salguero, Transition metal exchanged β zeolites: characterization of the metal state and catalytic application in the methanol conversion to hydrocarbons, Microporous Mesoporous Mater. 179 (2013) 30–39, https://doi.org/10.1016/j. micromeso.2013.05.013. I.H.A.E. Maksod, A. Al-Shehri, S. Bawaked, M. Mokhtar, K. Narasimharao, Structural and photocatalytic properties of precious metals modified TiO2-BEA zeolite composites, Mol. Catal. 441 (2017) 140–149, https://doi.org/10.1016/j. mcat.2017.08.012. N.A.A. Fatah, S. Triwahyono, A.A. Jalil, A. Ahmad, T.A.T. Abdullah, n-Heptane isomerization over mesostructured silica nanoparticles (MSN): dissociativeadsorption of molecular hydrogen on Pt and Mo sites, Appl. Catal. Gen. 516 (2016) 135–143, https://doi.org/10.1016/j.apcata.2016.02.026. S.M. Maier, A. Jentys, J.A. Lercher, Steaming of zeolite BEA and its effect on acidity: a comparative NMR and IR spectroscopic study, J. Phys. Chem. C 115 (2011) 8005–8013, https://doi.org/10.1021/jp108338g. G. Paul, C. Bisio, I. Braschi, M. Cossi, G. Gatti, E. Gianotti, L. Marchese, Combined solid-state NMR, FT-IR and computational studies on layered and porous materials, Chem. Soc. Rev. 47 (2018) 5684–5739, https://doi.org/10.1039/C7CS00358G. H.D. Setiabudi, A.A. Jalil, S. Triwahyono, N.H.N. Kamarudin, R.R. Mukti, IR study of iridium bonded to perturbed silanol groups of Pt-HZSM5 for n-pentane isomerization, Appl. Catal. Gen. 417–418 (2012) 190–199, https://doi.org/ 10.1016/j.apcata.2011.12.039. R. Baran, F. Averseng, Y. Millot, T. Onfroy, S. Casale, S. Dzwigaj, Incorporation of Mo into the vacant T-atom sites of the framework of BEA zeolite as mononuclear Mo evidenced by XRD and FTIR, NMR, EPR, and DR UV–Vis spectroscopies, J. Phys. Chem. C 118 (2014) 4143–4150, https://doi.org/10.1021/jp410016g. C. Freitas, N.S. Barrow, V. Zholobenko, Accessibility and location of acid sites in zeolites as probed by Fourier transform infrared spectroscopy and magic angle spinning nuclear magnetic resonance, Johnson Matthey Techn 62 (2018) 279–290, https://doi.org/10.1595/205651318x696792. Y. Lyu, Y. Liu, L. Xu, X. Zhao, Z. Liu, X. Liu, Z. Yan, Effect of ethanol on the surface properties and n-heptane isomerization performance of Ni/SAPO-11, Appl. Surf. Sci. 401 (2017) 57–64, https://doi.org/10.1016/j.apsusc.2016.12.230. G. Ye, Y. Sun, Z. Guo, K. Zhu, H. Liu, X. Zhou, M.-O. Coppens, Effects of zeolite particle size and internal grain boundaries on Pt/Beta catalyzed isomerization of npentane, J. Catal. 360 (2018) 152–159, https://doi.org/10.1016/j. jcat.2018.01.033. L. Gao, Z. Shi, U.J. Etim, P. Wu, W. Xing, Y. Zhang, P. Bai, Z. Yan, Superior catalytic performance of micro-mesoporous Beta-SBA-15 composite with a high indexed isomerization factor in hydroisomerization of n-heptane, Fuel 252 (2019) 653–665, https://doi.org/10.1016/j.fuel.2019.04.156. J.-Z. Zhang, M.A. Long, R.F. Howe, Molybdenum ZSM-5 zeolite catalysts for the conversion of methane to benzene, Catal. Today 44 (1998) 293–300, https://doi. org/10.1016/S0920-5861(98)00202-8. J. Kuˇcera, P. Nachtigall, A simple correlation between average T–O–T angles and 27Al NMR chemical shifts does not hold in high-silica zeolites, Microporous Mesoporous Mater. 85 (2005) 279–283, https://doi.org/10.1016/j. micromeso.2005.06.028. O. Zavorotynska, J.G. Vitillo, G. Spoto, A. Zecchina, Role of extraframework metal sites for hydrogen adsorption into the pores of a zeolite: FT-IR study, Int. J. Hydrogen Energy 36 (2011) 7944–7950, https://doi.org/10.1016/j. ijhydene.2011.01.179. G. Turnes Palomino, C. Otero Are´ an, M.R. Llop Carayol, Hydrogen adsorption on the faujasite-type zeolite Mg–X: an IR spectroscopic and thermodynamic study, Appl. Surf. Sci. 256 (2010) 5281–5284, https://doi.org/10.1016/j. apsusc.2009.12.118. H. Al-Kandari, A.M. Mohamed, F. Al-Kharafi, M.I. Zaki, A. Katrib, Modification of the catalytic properties of MoO2− x(OH)y dispersed on TiO2 by Pt and Cs additives, Appl. Catal. Gen. 417–418 (2012) 298–305, https://doi.org/10.1016/j. apcata.2012.01.006. T. Matsuda, T. Ohno, Y. Hiramatsu, Z. Li, H. Sakagami, N. Takahashi, Effects of the amount of MoO3 on the catalytic properties of H2-reduced Pt/MoO3–SiO2 for heptane isomerization, Appl. Catal. Gen. 362 (2009) 40–46, https://doi.org/ 10.1016/j.apcata.2009.04.018. T. Ohno, Z. Li, N. Sakai, H. Sakagami, N. Takahashi, T. Matsuda, Heptane isomerization over molybdenum oxides obtained by H2 reduction of HxMoO3 with different hydrogen contents, Appl. Catal. Gen. 389 (2010) 52–59, https://doi.org/ 10.1016/j.apcata.2010.09.006. S. Triwahyono, A.A. Jalil, N.N. Ruslan, H.D. Setiabudi, N.H.N. Kamarudin, C5–C7 linear alkane hydroisomerization over MoO3–ZrO2 and Pt/MoO3–ZrO2 catalysts, J. Catal. 303 (2013) 50–59, https://doi.org/10.1016/j.jcat.2013.03.016. |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |