UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :article
Subject :Q Science (General)
ISSN :0167-9317
Main Author :Mansoor Ahmad
Additional Authors :Mohamed, A.
Title :Temperature dependant high output voltage generation via mechanical transducer by using surface modified (O2, CO2, NO2) ZnO nanowires
Place of Production :Tanjung Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2021
Notes :Microelectronic Engineering
Corporate Name :Universiti Pendidikan Sultan Idris
HTTP Link : Click to view web link

Abstract : Universiti Pendidikan Sultan Idris
Here, we report high output piezoelectric voltage generation using ZnO nanowires oxidized at high temperature. The study has been carried out to observe behavior of ZnO nanowires in the presence of strong oxidizing gases (O, CO2, and NO2) at elevated temperature. The focus of the research was to generate high piezoelectric voltage by using surface modified ZnO nanowires. VING (vertically integrated nanowire generator) has been exposed to oxidizing gases. ZnO nanowires oxidized with O2 have shown maximum high output voltage of 3.36 V at 200o C, showing net rise of 0.762 V as compared to voltage generated at room temperature. Similarly, ZnO nanowires modified with CO2 molecules have generated piezoelectric voltage of 2.589 V at 200o C, exhibiting a rise of 0.778 V as compared to the values recorded at room temperature and ZnO nanowires modified with NO2 have generated maximum output voltage of 3.307 V at 150o C, indicating net rise of 0.59 V to the voltage values achieved at room temperature. ? 2018

References

Y. Cui, H.K. Park Wei, C.M. Lieber, Science 293 (2001) 1289.

C.M. Lieber, Solid State Commun. 107 (1998) 607.

Z.L. Wang, Mater. Today 10 (2007) 20.

S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, Nat. Nanotechnol. 6 (2011) 506–510.

C. Soci, A. Zhang, B. Xiang, S.A. Dayeh, D.P.R. Aplin, J. Park, Nano Lett. 7 (2007) 1003–1009.

Rackauskas S., Barbero N., Barolo C., Viscardi,. 9 (2017) 28.

K. Znajdek, M. Sibinski, ´ Z. Lisik, A. Apostoluk, Y. Zhu, Opto-Electron. Rev. 25 (2017) 99–102.

X.M. Zhang, M.Y. Lu, Y. Zhang, L.J. Chen, Z.L. Wang, Adv. Mater. 21 (2009) 2767–2770.

Su Yuanjie, Chunxu Chen, Hong Pan, et al., Adv. Funct. Mater. 31 (2021) 2010962.

Su Yuanjie, W. Jianjun, Bo Wang, Y. Tiannan, et al., ACS Nano 14 (2020) 6067–6075.

Su Yuanjie, Y. Tiannan, et al., Nano Energy 74 (2020) 104941.

M. Ahmad, J. Kiely, R. Luxton, Indian J. Eng. Mater. Sci. 21 (2014).

M. Ahmad, J. Kiely, R. Luxton, Sens. Bio Sens. Res. (2016) 7.

M. Ahmad, J. Kiely, R. Luxton, J. Phys. Chem. Solids (2017) 104.

X.D. Wang, J. Zhou, J.H. Song, J. Liu, N.S. Xu, Z.L. Wang, Nano Lett. 6 (2006) 2768.

X.D. Wang, J. Liu, J.H. Song, Z.L. Wang, Nano Lett. 7 (2007) 2475.

X.D. Wang, J.H. Song, J. Liu, Z.L. Wang, Science 316 (2007) 102.

A. Tarat, R. Majithia, R.A. Brown, M.W. Penny, Surf. Sci. 606 (2012) 715–721.

Si Wang, Su Yuanjie, et al., Nano Energy 63 (2019) 103829. 

Su Yuanjie, X. Guangzhong, et al, Nano Energy 47 (2018) 316–324.

Su Yuanjie, Y. Mingliang, et al., Appl. Phys. Lett. 115 (2019), 073504.

Su Yuanjie, Y. Mingliang, Sensors Actuators B Chem. 251 (2017) 144–152.

E. Rokhsat, O. Akhavan, Appl. Surf. Sci. 371 (2016) 592–595.

X.Y. Kong, Y. Ding, R.S. Yang, Z.L. Wang, Science 303 (2004) 1348.

R.S. Yang, Y. Ding, Z.L. Wang, Nano Lett. 4 (2004) 1309.

Y. Xi, J.H. Song, S. Xu, R.S. Yang, Z.Y. Gao, Z.L. Hu, Wang, J. Mater. Chem. 19 (2009) 9260.

S. Rackauskas, A.G. Nasibulin, H. Jiang, Y. Tian, Appl. Phys. Lett. 95 (2009) 183114.

Dae-YongJeong Im-JunNo, Sung Kim SunwooLee, Microelectron. Eng. 110 (2013) 282.

E. Comini, G. Faglia, G. Sberveglieri, Solid State Gas Sensor (2009) 47–107.

E. Comini, G. Faglia, Z. Pan, Z.L. Wang, Appl. Phys. Lett. 81 (2002) 1869.

E. Comini, C. Baratto, G. Faglia, M. Ferroni, J. Phys. D. Appl. Phys. 40 (2007) 7255. [

M.-P. Lu, M.-Y. Lu, L. Chen, Nano Energy 1 (2012) 247–258.

L. Liao, H.B. Lu, J.C. Li, H. He, D.F. Wang, D.J. Fu, C. Liu, J. Phys. Chem. 5 (2007) 1900–1903.

J.-T. Hsueh, C.-L. Hsu, S.-J. Chang, I.-C. Chen, Sensors Actuators B Chem. 2 (2007) 473–477.

P.S. Cho, K.-W. Kim, J.-H. Lee, J. Electroceram. 17 (2006) 975–978.

P. Feng, Q. Wan, T.H. Wang, Appl. Phys. Lett. 87 (2005) 213111.

M. Ahmad, M. KAhmad, N. Nafarizal, Mater. Res. Expr. 7 (2020), 095004.

M. Ahmad, M.K. Ahmad, N. Nafarizal, C.F. Soon, A.B. Suriani, Vacuum 182 (2020) 109565.

M. Ahmad, M.K. Ahmad, N. Nafarizal, Bull. Mater. Sci. 43 (2020) 267.

Prabakaran Shankar, John Bosco Balaguru Rayappan, Sci. Lett. J. 4 (2015) 126.

N. Yamazoe, G. Sakai, K. Shimanoe, Catal. Surv. Jpn. 7 (2003) 63.

P. Tyagi, A. Sharma, M. Tomar, V. Gupta, Chem. Sensors 4 (2014) 18.

A. Sharma, M. Tomar, V. Gupta, J. Nanosci. Lett. 2 (2014) 27.

C. Xu, J. Tamaki, N. Miura, N. Yamazoe, Sensors Actuators B 3 (1991) 147.

Yanhong Li, Zhihao Zhao, Yikui Gao, Shaoxin Li, Linglin Zhou, Jie Wang, Zhong Lin Wang, ACS Appl. Mater. Interfaces 13 (26) (2021) 30776–30784.

Sheng Xu, Yong Qin, Chen Xu, Yaguang Wei, Z.L. Wang, Nat. Nanotechnol. 5 (2010) 365.

R. Agrawal, B. Peng, H.D. Espinosa, Nano Lett. 9 (2009) 4177–4183.

Y. Gao, Z.L. Wang, Nano Lett. 9 (2009) 1103–1110.

H. Zhou, Z. Li, Synthesis of nanowires, Mater. Chem. Phys. 89 (2005) 326–331.

X. Liu, J. Zhang, X. Guo, S. Wu, S. Wang, Nanoscale 2 (2010) 1178.

M. Ahmad, S. Yingying, A. Nisar, H. Sun, W. Shen, J. Mater. Chem. 21 (2011) 7723.

T. Ivanova, A. Harizanova, T. Koutzarova, B. Vertruyen, Mater. Lett. 64 (2010) 1147–1149.

R. Wahab, S.G. Ansari, Y.S. Kim, H.K. Seo, G.S. Kim, G. Khang, H.S. Shin, Mater. Res. Bull. 42 (2007) 1640–1648.

M. Salavati-Niasari, F. Davar, M. Mazaheri, Mater. Lett. 62 (2008) 1890–1892.

R. NguyenVand Yang, Nano Energy 14 (2015) 49–61.

J. Anderson, G.V. Chris, Rep. Prog. Phys. 72 (2009) 126501.

S. Capone, P. Siciliano, Encycl. Nanosci. Nanotechnol. 3 (2004) 769.

M. Lucas, W.J. Mai, R.S. Yang, Z.L. Wang, E. Riedo, Nano Lett. 7 (2007) 1314–1317.

J.H. Song, X.D. Wang, E. Riedo, Z.L. Wang, Nano Lett. 5 (2005) 1954–1958.

Z.Y. Gao, Y. Ding, S.S. Lin, Y. Hao, Z.L. Wang, Phys. Status Solid Rapid Res. Lett. 3 (2009) 260–262.

Sheng Xu, Yong Qin, Chen Xu, Yaguang, Z.L. Wang, Nat. Nanotechnol. 46 (2010) 38.

Jun Zhao, Di Wang, Fan Zhang, Yuan Liu, Baodong Chen, Zhong Lin Wang, Jinshan Pan, Roland Larsson, Yijun Shi, ACS Nano 15 (7) (2021) 11869–11879.

M.J. Madou, S.R. Morrison, Chemical Sensing with Solid State Devices, Academic Press, San Diego, 1989.

Y. Shen, W. Wang, X. Chen, B. Zhang, D. Wei, S. Gao, B. Cui, J. Mater. Chem. A 4 (2016) 1345–1352.

X. Chen, Yanbai Shen, Xiangxi Zhong, J. Alloys Compd. 783 (2019) 503.

S. Kannan, H. Steinebach, L. Rieth, F. Solzbacher, Sensors Actuators B 148 (2010) 126.

X. Pan, Y.J. Xu, J. Phys, Chem. C 117 (2013) 17996–18005. 

S.L. Bai, J.W. Hu, R.X. Luo, D.Q. Li, A.F. Chen, C.C. Liu, X. Xu, IEEE Sensors J. 12 (2012) 1234.

M.B. Rahmani, S.H. Keshmiri, M. Shafiei, K. Latham, Sens. Lett. 7 (2009) 1.

S. Kannan, L. Rieth, F. Solzbacher, Sensors Actuators B 149 (2010) 8.

G. Korotcenkov, Sensors Actuators B 107 (2005) 209.

N. Yamazoe, Sensors Actuators B 5 (1991) 7.

Z.L. Wang, Mater. Sci. Eng. 64 (2009) 33–71.

Guang Zhu, Rusen Yang, Sihong Wang, Z.L. Wang, Nano Lett. 10 (2010) 3151.

Suo Baia, Zhanga Lu, Qi Xua, Z.L. Wang, Nano Energy 2 (2013) 749–753.

 


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.