UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :article
Subject :Q Science
ISSN :1866-9298
Main Author :Zullyadini A. Rahaman
Title :The operational role of remote sensing in assessing and predicting land use/land cover and seasonal land surface temperature using machine learning algorithms in Rajshahi, Bangladesh
Place of Production :Tanjung Malim
Publisher :Fakulti Sains Kemanusiaan
Year of Publication :2021
Notes :Applied Geomatics
Corporate Name :Universiti Pendidikan Sultan Idris
HTTP Link :Click to view web link

Abstract : Universiti Pendidikan Sultan Idris
Human activity has boosted carbon dioxide emissions, causing temperatures to rise. The average temperature on Earth is roughly 15��C, but it has been much higher and lower in the past. There are natural climatic changes, but experts say temperatures are already rising faster than at any other period in history. Unplanned urbanization can sometimes backfire, causing negative consequences that harm the economy and contribute to environmental damages, especially in developing countries like Bangladesh. Because of the strong association between land use/land cover and land surface temperature (LST), the study attempted to analyze and estimate LULC and seasonal (both summer and winter) LSTs using Landsat satellite images at 5-year intervals from 1995 to 2020. Later, the study forecasted both LULC and seasonal LSTs for 2030 and 2040 using cellular automata (CA) and artificial neural network (ANN) algorithms for Rajshahi district. As supporting parameters for determining the magnitude of climate change effects owing to urbanization and temperature rise, primary data collection procedures such as focus group discussions (FGDs) and key informant interviews (KIIs) with experts from diverse sectors were used. Results reveal that the built-up area was increased from 158.22 km2 (6.64%) to 386.74 km2 (16.23%) in this 25�years? timeframe, and it contributed the highest average temperature (41.68��C in 2020 in summer) comparing with other LULCs. The LSTs were increasing at an alarming rate with 1?2��C standard deviations per 5�years and maximum temperature was increased from 1995 to 2020 by 37.22 to 42.7��C) in summer and 22.18 to 28.94��C in winter. Prediction states that net increase of built-up area will be 2.51 and 5.29, respectively, in 2030 and 2050 from 2020. Maximum LST will likely to be increased to 43.23��C (2030) and 45.92��C (2040) in summer, and 30.94��C (2030) and 31.77��C (2040) in winter. FGDs and KIIs assessments indicate that frequent LULC change was the main reason for increasing LSTs (71%) and 76% experts agreed that heat waves are the most influencing factors for adverse climate change, among other parameters. The work introduces new methods for integrating remote sensing data with primary datasets, which will provide substantial insights to urban planners and policymakers in terms of participatory and sustainable planning. ? 2021, Societ� Italiana di Fotogrammetria e Topografia (SIFET).

References

(2016). Climate Change & Sustainable Report, Retrieved from www.scopus.com

Mitigation of climate change. (2007). Mitigation of Climate Change, Retrieved from www.scopus.com

Abdullah-Al-Faisal, Abdulla - Al Kafy, Foyezur Rahman, A. N. M., Rakib, A. A., Akter, K. S., Raikwar, V., . . . Kona, M. A. (2021). Assessment and prediction of seasonal land surface temperature change using multi-temporal landsat images and their impacts on agricultural yields in rajshahi, bangladesh. Environmental Challenges, 4 doi:10.1016/j.envc.2021.100147

Ahmed, B., Kamruzzaman, M. D., Zhu, X., Shahinoor Rahman, M. D., & Choi, K. (2013). Simulating land cover changes and their impacts on land surface temperature in dhaka, bangladesh. Remote Sensing, 5(11), 5969-5998. doi:10.3390/rs5115969

Ahmed, S. (2018). Assessment of urban heat islands and impact of climate change on socioeconomic over suez governorate using remote sensing and GIS techniques. Egyptian Journal of Remote Sensing and Space Science, 21(1), 15-25. doi:10.1016/j.ejrs.2017.08.001

Al Rakib, A., Akter, K. S., Rahman, M. N., Arpi, S., & Kafy, A. -. (2020). Analyzing the pattern of land use land cover change and its impact on land surface temperature: A remote sensing approach in mymensingh, bangladesh. 1st Int.Student Res.Conf., Retrieved from www.scopus.com

Al Rakib, A., Ayan, S. M., Orthy, T. T., Sarker, O., Intisar, L., & Arnob, M. A. (2020). In depth-analysis of urban resident-satisfaction level of mirpur. A Participatory Approach.1St Int.Student Res.Conf.2020, Retrieved from www.scopus.com

Al Rakib, A., Rahman, M. N., Arpi, S., Ratu, J. F., Afroz, F., Hossain, N., & Zubayer, M. S. (2020). An assessment on the housing satisfaction of padma residential area, rajshahi. 1st. Student Res.Conf., Retrieved from www.scopus.com

Alamgir, M., Khan, N., Shahid, S., Yaseen, Z. M., Dewan, A., Hassan, Q., & Rasheed, B. (2020). Evaluating severity–area–frequency (SAF) of seasonal droughts in bangladesh under climate change scenarios. Stochastic Environmental Research and Risk Assessment, 34(2), 447-464. doi:10.1007/s00477-020-01768-2

Al-Hamdan, M. Z., Oduor, P., Flores, A. I., Kotikot, S. M., Mugo, R., Ababu, J., & Farah, H. (2017). Evaluating land cover changes in eastern and southern africa from 2000 to 2010 using validated landsat and MODIS data. International Journal of Applied Earth Observation and Geoinformation, 62, 8-26. doi:10.1016/j.jag.2017.04.007

Al-sharif, A. A. A., & Pradhan, B. (2015). A novel approach for predicting the spatial patterns of urban expansion by combining the chi-squared automatic integration detection decision tree, markov chain and cellular automata models in GIS. Geocarto International, 30(8), 858-881. doi:10.1080/10106049.2014.997308

Al-sharif, A. A. A., & Pradhan, B. (2014). Monitoring and predicting land use change in tripoli metropolitan city using an integrated markov chain and cellular automata models in GIS. Arabian Journal of Geosciences, 7(10), 4291-4301. doi:10.1007/s12517-013-1119-7

Amzad Hossain, M. (2017). Financing Small Scale Industries of Bangladesh with Special Refrence to Selected Small Industries in Rajshahi District, Retrieved from www.scopus.com

Arsanjani, J. J., Helbich, M., Kainz, W., & Boloorani, A. D. (2013). Integration of logistic regression, markov chain and cellular automata models to simulate urban expansion. International Journal of Applied Earth Observation and Geoinformation, 21(1), 265-275. doi:10.1016/j.jag.2011.12.014

Azari, M., Tayyebi, A., Helbich, M., & Reveshty, M. A. (2016). Integrating cellular automata, artificial neural network, and fuzzy set theory to simulate threatened orchards: Application to maragheh, iran. GIScience and Remote Sensing, 53(2), 183-205. doi:10.1080/15481603.2015.1137111

Balogun, I., & Ishola, K. (2017). Projection of future changes in landuse/landcover using cellular automata/markov model over akure city, nigeria. J.Remote Sens.Technol., 5(1), 22-31. Retrieved from www.scopus.com

Bangladesh Bureau of Statistics (BBS). (2013). District statistics 2011 dhaka. dhaka. District Statistics 2011, Retrieved from www.scopus.com

Bonafoni, S., Baldinelli, G., & Verducci, P. (2017). Sustainable strategies for smart cities: Analysis of the town development effect on surface urban heat island through remote sensing methodologies. Sustainable Cities and Society, 29, 211-218. doi:10.1016/j.scs.2016.11.005

Celik, B., Kaya, S., Alganci, U., & Seker, D. Z. (2019). Assessment of the relationship between land use/cover changes and land surface temperatures: A case study of thermal remote sensing. Fresenius Environmental Bulletin, 28(2), 541-547. Retrieved from www.scopus.com

Chakroborty, S., Rakib, A., Kafy, A., & Al, A. (2020). Monitoring water quality based on community perception in the northwest region of bangladesh. 1st International Student Research Conference - 2020, Dhaka, Bangladesh, Retrieved from www.scopus.com

Chen, X. -., Zhao, H. -., Li, P. -., & Yin, Z. -. (2006). Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sensing of Environment, 104(2), 133-146. doi:10.1016/j.rse.2005.11.016

Clemett, A., Amin, M. M., Ara, S., & Akan, M. M. R. (2006). Background information for rajshahi city, bangladesh. WASPA Asia Project Report, 2, 1-29. Retrieved from www.scopus.com

Connors, J. P., Galletti, C. S., & Chow, W. T. L. (2013). Landscape configuration and urban heat island effects: Assessing the relationship between landscape characteristics and land surface temperature in phoenix, arizona. Landscape Ecology, 28(2), 271-283. doi:10.1007/s10980-012-9833-1

Dekić, J. P., Mitković, P. B., Dinic Branković, M. M., Igić, M. Z., Dekić, P. S., & Mitković, M. P. (2018). The study of effects of greenery on temperature reduction in urban areas. Thermal Science, 2018, 988-1000. doi:10.2298/TSCI170530122D

Development Design Consultants Limited, M. C. A. (2008). Working paper on existning landuse, demographic and transport (revised). Government of the People's Republic of Bangladesh Ministry of Housing and Public Works, 47 Retrieved from www.scopus.com

Dey, N. N., Al Rakib, A., Kafy, A. -., & Raikwar, V. (2021). Geospatial modelling of changes in land use/land cover dynamics using multi-layer perception markov chain model in rajshahi city, bangladesh. Environmental Challenges, 4 doi:10.1016/j.envc.2021.100148

Durand, C. P., Andalib, M., Dunton, G. F., Wolch, J., & Pentz, M. A. (2011). A systematic review of built environment factors related to physical activity and obesity risk: Implications for smart growth urban planning. Obesity Reviews, 12(5), e173-e182. doi:10.1111/j.1467-789X.2010.00826.x

Eastman, J. R. (2012). IDRISI selva manual. IDRISI Selva Manual, Retrieved from www.scopus.com

Ettehadi Osgouei, P., & Kaya, S. (2017). Analysis of land cover/use changes using landsat 5 TM data and indices. Environmental Monitoring and Assessment, 189(4) doi:10.1007/s10661-017-5818-5

Fahad, M. G. R., Saiful Islam, A. K. M., Nazari, R., Alfi Hasan, M., Tarekul Islam, G. M., & Bala, S. K. (2018). Regional changes of precipitation and temperature over bangladesh using bias-corrected multi-model ensemble projections considering high-emission pathways. International Journal of Climatology, 38(4), 1634-1648. doi:10.1002/joc.5284

Fortin, M. -., Boots, B., Csillag, F., & Remmel, T. K. (2003). On the role of spatial stochastic models in understanding landscape indices in ecology. Oikos, 102(1), 203-212. doi:10.1034/j.1600-0706.2003.12447.x

Fu, P., & Weng, Q. (2018). Responses of urban heat island in atlanta to different land-use scenarios. Theoretical and Applied Climatology, 133(1-2), 123-135. doi:10.1007/s00704-017-2160-3

Gaur, A., Eichenbaum, M. K., & Simonovic, S. P. (2018). Analysis and modelling of surface urban heat island in 20 canadian cities under climate and land-cover change. Journal of Environmental Management, 206, 145-157. doi:10.1016/j.jenvman.2017.10.002

Ghosh, P., Mukhopadhyay, A., Chanda, A., Mondal, P., Akhand, A., Mukherjee, S., . . . Hazra, S. (2017). Application of cellular automata and markov-chain model in geospatial environmental modeling- A review. Remote Sensing Applications: Society and Environment, 5, 64-77. doi:10.1016/j.rsase.2017.01.005

Gopal, S., & Woodcock, C. (1996). Remote sensing of forest change using artificial neural networks. IEEE Transactions on Geoscience and Remote Sensing, 34(2), 398-404. doi:10.1109/36.485117

Guan, D., Li, H., Inohae, T., Su, W., Nagaie, T., & Hokao, K. (2011). Modeling urban land use change by the integration of cellular automaton and markov model. Ecological Modelling, 222(20-22), 3761-3772. doi:10.1016/j.ecolmodel.2011.09.009

Habitat, U. (2016). Urbanization and development: Emerging futures. World Cities Report, 3(4), 4-51. Retrieved from www.scopus.com

Halmy, M. W. A., Gessler, P. E., Hicke, J. A., & Salem, B. B. (2015). Land use/land cover change detection and prediction in the north-western coastal desert of egypt using markov-CA. Applied Geography, 63, 101-112. doi:10.1016/j.apgeog.2015.06.015

Handayanto, R. T., Kim, S. M., Tripathi, N. K., & Herlawati. (2018). Land use growth simulation and optimization in the urban area. Paper presented at the Proceedings of the 2nd International Conference on Informatics and Computing, ICIC 2017, , 2018-January 1-6. doi:10.1109/IAC.2017.8280532 Retrieved from www.scopus.com

Hart, M. A., & Sailor, D. J. (2009). Quantifying the influence of land-use and surface characteristics on spatial variability in the urban heat island. Theoretical and Applied Climatology, 95(3-4), 397-406. doi:10.1007/s00704-008-0017-5

Hu, Z., & Lo, C. P. (2007). Modeling urban growth in atlanta using logistic regression. Computers, Environment and Urban Systems, 31(6), 667-688. doi:10.1016/j.compenvurbsys.2006.11.001

Islam, K., Rahman, M. F., & Jashimuddin, M. (2018). Modeling land use change using cellular automata and artificial neural network: The case of chunati wildlife sanctuary, bangladesh. Ecological Indicators, 88, 439-453. doi:10.1016/j.ecolind.2018.01.047

Islam, R. M., & Hasan, M. Z. (2011). Land use changing pattern and challenges for agricultural land: A study on rajshahi district. J.Life Earth Sci, 6, 69-74. Retrieved from www.scopus.com

Kafy, A. -., Abdullah-Al-Faisal, Raikwar, V., Rakib, A. A., Kona, M. A., & Ferdousi, J. (2021). Geospatial approach for developing an integrated water resource management plan in rajshahi, bangladesh. Environmental Challenges, 4 doi:10.1016/j.envc.2021.100139

Kafy, A. -., Al Rakib, A., Akter, K. S., Rahaman, Z. A., Faisal, A. -., Mallik, S., . . . Ali, M. Y. (2021). Monitoring the effects of vegetation cover losses on land surface temperature dynamics using geospatial approach in rajshahi city, bangladesh. Environmental Challenges, 4 doi:10.1016/j.envc.2021.100187

Kafy, A. -., Faisal, A. -., Rahman, M. S., Islam, M., Al Rakib, A., Islam, M. A., . . . Sattar, G. S. (2021). Prediction of seasonal urban thermal field variance index using machine learning algorithms in cumilla, bangladesh. Sustainable Cities and Society, 64 doi:10.1016/j.scs.2020.102542

Kafy, A. -., Faisal, A. -., Sikdar, S., Hasan, M., Rahman, M., Khan, M. H., & Islam, R. (2020). Impact of LULC changes on LST in rajshahi district of bangladesh: A remote sensing approach. J.Geogr.Stud., 3(1), 11-23. Retrieved from www.scopus.com

Kafy, A. A., Islam, M., Sikdar, M. S., Ashrafi, T. J., Faisal, A. A., Islam, M. A., . . . Ali, M. Y. (2021). Remote sensing-based approach to identify the influence of land use/land cover change on the urban thermal environment: A case study in chattogram city, bangladesh. Re-Envisioning Remote Sensing Applications: Perspective from Developing Countries, , 216-237. Retrieved from www.scopus.com

Kafy, A. -., Naim, M. N. H., Khan, M. H. H., Islam, M. A., Al Rakib, A., Faisal, A. -., & Sarker, M. H. S. (2021). Prediction of urban expansion and identifying its impacts on the degradation of agricultural land: A machine learning-based remote-sensing approach in rajshahi, bangladesh. Re-Envisioning Remote Sensing Applications: Perspective from Developing Countries, , 85-106. Retrieved from www.scopus.com

Kafy, A. -., Naim, M. N. H., Subramanyam, G., Faisal, A. -., Ahmed, N. U., Al Rakib, A., . . . Sattar, G. S. (2021). Cellular Automata Approach in Dynamic Modeling of Land Cover Changes using Rapideye Images in Dhaka, Retrieved from www.scopus.com

Kafy, A. -., Rahman, M. N., Al Rakib, A., Arpi, S., & Faisal, A. -. (2019). Assessing satisfaction level of urban residential area: A comparative study based on resident's perception in rajshahi city, bangladesh. 1st International Conference on Urban and Regional Planning, Bangladesh, Bangladesh Institute of Planners, Dhaka, Bangladesh, , 225-235. Retrieved from www.scopus.com

Kafy, A. -., Rahman, M. S., Faisal, A. -., Hasan, M. M., & Islam, M. (2020). Modelling future land use land cover changes and their impacts on land surface temperatures in rajshahi, bangladesh. Remote Sensing Applications: Society and Environment, 18 doi:10.1016/j.rsase.2020.100314

Lai, L. -., & Cheng, W. -. (2010). Urban heat island and air pollution-an emerging role for hospital respiratory admissions in an urban area. Journal of Environmental Health, 72(6), 32-35. Retrieved from www.scopus.com

Lilly Rose, A., & Devadas, M. D. (2009). Analysis of land surface temperature and land use/land cover types using remote sensing imagery—A case in chennai city, india. The Seventh International Conference on Urban Climate, , 1-4. Retrieved from www.scopus.com

Liu, G., Jin, Q., Li, J., Li, L., He, C., Huang, Y., & Yao, Y. (2017). Policy factors impact analysis based on remote sensing data and the CLUE-S model in the lijiang river basin, china. Catena, 158, 286-297. doi:10.1016/j.catena.2017.07.003

Losiri, C., Nagai, M., Ninsawat, S., & Shrestha, R. P. (2016). Modeling urban expansion in bangkok metropolitan region using demographic-economic data through cellular automata-markov chain and multi-layer perceptron-markov chain models. Sustainability (Switzerland), 8(7) doi:10.3390/su8070686

Lu, Y., Wu, P., Ma, X., & Li, X. (2019). Detection and prediction of land use/land cover change using spatiotemporal data fusion and the cellular Automata–Markov model. Environmental Monitoring and Assessment, 191(2) doi:10.1007/s10661-019-7200-2

Maduako, I., Ebinne, E., Zhang, Y., & Bassey, P. (2016). Prediction of land surface temperature (LST) changes within ikom city in nigeria using artificial neural network (ANN). Int J Remote Sens Appl, 6, 96. Retrieved from www.scopus.com

Maduako, I. D., Yun, Z., & Patrick, B. (2016). Simulation and prediction of land surface temperature (LST) dynamics within ikom city in nigeria using artificial neural network (ANN). J.Remote Sens.GIS, 5(1), 1-7. Retrieved from www.scopus.com

Maimaitiyiming, M., Ghulam, A., Tiyip, T., Pla, F., Latorre-Carmona, P., Halik, T., . . . Caetano, M. (2014). Effects of green space spatial pattern on land surface temperature: Implications for sustainable urban planning and climate change adaptation. ISPRS Journal of Photogrammetry and Remote Sensing, 89, 59-66. doi:10.1016/j.isprsjprs.2013.12.010

Maithani, S. (2015). Neural networks-based simulation of land cover scenarios in doon valley, india. Geocarto International, 30(2), 163-185. doi:10.1080/10106049.2014.927535

Mallick, J., Kant, Y., & Bharath, B. D. (2008). Estimation of land surface temperature over delhi using landsat-7 ETM+. J.Ind.Geophys.Union, 12(3), 131-140. Retrieved from www.scopus.com

Mansour, S., Al-Belushi, M., & Al-Awadhi, T. (2020). Monitoring land use and land cover changes in the mountainous cities of oman using GIS and CA-markov modelling techniques. Land use Policy, 91 doi:10.1016/j.landusepol.2019.104414

Mas, J. F., & Flores, J. J. (2008). The application of artificial neural networks to the analysis of remotely sensed data. International Journal of Remote Sensing, 29(3), 617-663. doi:10.1080/01431160701352154

Maulik, U., & Chakraborty, D. (2017). Remote sensing image classification: A survey of support-vector-machine-based advanced techniques. IEEE Geoscience and Remote Sensing Magazine, 5(1), 33-52. doi:10.1109/MGRS.2016.2641240

McCarthy, M. J., Radabaugh, K. R., Moyer, R. P., & Muller-Karger, F. E. (2018). Enabling efficient, large-scale high-spatial resolution wetland mapping using satellites. Remote Sensing of Environment, 208, 189-201. doi:10.1016/j.rse.2018.02.021

Mishra, V. N., & Rai, P. K. (2016). A remote sensing aided multi-layer perceptron-markov chain analysis for land use and land cover change prediction in patna district (bihar), india. Arabian Journal of Geosciences, 9(4) doi:10.1007/s12517-015-2138-3

Mishra, V. N., Rai, P. K., Prasad, R., Punia, M., & Nistor, M. -. (2018). Prediction of spatio-temporal land use/land cover dynamics in rapidly developing varanasi district of uttar pradesh, india, using geospatial approach: A comparison of hybrid models. Applied Geomatics, 10(3), 257-276. doi:10.1007/s12518-018-0223-5

Mozumder, C., & Tripathi, N. K. (2014). Geospatial scenario based modelling of urban and agricultural intrusions in ramsar wetland deepor beel in northeast india using a multi-layer perceptron neural network. International Journal of Applied Earth Observation and Geoinformation, 32(1), 92-104. doi:10.1016/j.jag.2014.03.002

Naim, M. N. H., & Kafy, A. -. (2021). Assessment of urban thermal field variance index and defining the relationship between land cover and surface temperature in chattogram city: A remote sensing and statistical approach. Environmental Challenges, 4 doi:10.1016/j.envc.2021.100107

Niyogi, D. (2019). Land surface processes. Current Trends in the Representation of Physical Processes in Weather and Climate Models, , 349-370. Retrieved from www.scopus.com

Nurwanda, A., & Honjo, T. (2020). The prediction of city expansion and land surface temperature in bogor city, indonesia. Sustainable Cities and Society, 52 doi:10.1016/j.scs.2019.101772

Ogashawara, I., & da Silva Brum, V. (2012). A quantitative approach for analyzing the relationship between urban heat islands and land cover. Remote Sensing, 4(11), 3596-3618. doi:10.3390/rs4113544

Pal, S., & Ziaul, S. (2017). Detection of land use and land cover change and land surface temperature in english bazar urban centre. Egyptian Journal of Remote Sensing and Space Science, 20(1), 125-145. doi:10.1016/j.ejrs.2016.11.003

Pontius Jr., R. G., & Millones, M. (2011). Death to kappa: Birth of quantity disagreement and allocation disagreement for accuracy assessment. International Journal of Remote Sensing, 32(15), 4407-4429. doi:10.1080/01431161.2011.552923

Rahman, K. M., Melville, L., Fulford, D., & Huq, S. M. I. (2017). Green-house gas mitigation capacity of a small scale rural biogas plant calculations for bangladesh through a general life cycle assessment. Waste Management and Research, 35(10), 1023-1033. doi:10.1177/0734242X17721341

Rahman, M. S., Mohiuddin, H., Kafy, A. -., Sheel, P. K., & Di, L. (2018). Classification of cities in bangladesh based on remote sensing derived spatial characteristics. J.Urban Manag., Retrieved from www.scopus.com

Rahman, M. T. (2016). Detection of land use/land cover changes and urban sprawl in al-khobar, saudi arabia: An analysis of multi-temporal remote sensing data. ISPRS International Journal of Geo-Information, 5(2) doi:10.3390/ijgi5020015

Rahman, M. T., Aldosary, A. S., & Mortoja, M. G. (2017). Modeling future land cover changes and their effects on the land surface temperatures in the saudi arabian eastern coastal city of dammam. Land, 6(2) doi:10.3390/land6020036

Roy, D. P., Wulder, M. A., Loveland, T. R., C.E., W., Allen, R. G., Anderson, M. C., . . . Zhu, Z. (2014). Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145, 154-172. doi:10.1016/j.rse.2014.02.001


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.