UPSI Digital Repository (UDRep)
Start | FAQ | About

QR Code Link :

Type :article
Subject :Q Science
ISSN :2510-1560
Main Author :Mohd Firdaus Malek
Additional Authors :Suriani Abu Bakar
Title :The utilization of waste cooking palm oil as a green carbon source for the growth of multilayer graphene
Place of Production :Tanjung Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2021
Notes :Journal of the Australian Ceramic Society
Corporate Name :Universiti Pendidikan Sultan Idris
Web Link :Click to view web link
PDF Full Text :Login required to access this item.

Abstract : Universiti Pendidikan Sultan Idris
Waste cooking palm oil (WCPO) has been utilized as a green carbon source for the synthesization of graphene by double thermal chemical vapor deposition. The WCPO was placed in the first furnace (precursor furnace) whereas nickel was placed in the second furnace (deposition furnace). The deposition temperatures were varied between 850 and 1100��C. Raman results reveal the highest 2-D peak for the sample synthesized at 1000��C, which indicates the high-quality formation of graphene. Besides, the sample also shows good crystallinity with a sharp peak at 26.8� which represents the hexagonal graphite structure and the introduction of graphene sheet formation. On the other hand, the FESEM image displays hexagonal structures since the graphene layers were formed after the precipitation of the carbon. Meanwhile, the UV-Vis result shows the highest reflectance in the visible light region which indicates the presence of the graphene layer on Ni. [Figure not available: see fulltext.] ? 2020, Australian Ceramic Society.

References

Abdullah, N., & Sulaiman, F. (2013). The oil palm wastes in malaysia. Biomass Now - Sustainable Growth and use, , 75-100. Retrieved from www.scopus.com

Agorku, E. S., Mamo, M. A., Mamba, B. B., Pandey, A. C., & Mishra, A. K. (2015). Palladium-decorated zinc sulfide/reduced graphene oxide nanocomposites for enhanced visible light-driven photodegradation of indigo carmine. Materials Science in Semiconductor Processing, 33, 119-126. doi:10.1016/j.mssp.2015.01.033

Ahmed, S. F., Khalid, M., Amin, N., & Rashmi, W. (2018). Investigation of rheological and corrosion properties of graphene-based eutectic salt. Journal of Materials Science, 53(1), 692-707. doi:10.1007/s10853-017-1497-4

Antony, R. P., Preethi, L. K., Gupta, B., Mathews, T., Dash, S., & Tyagi, A. K. (2015). Efficient electrocatalytic performance of thermally exfoliated reduced graphene oxide-pt hybrid. Materials Research Bulletin, 70, 60-67. doi:10.1016/j.materresbull.2015.04.015

Aunkor, M. T. H., Mahbubul, I. M., Saidur, R., & Metselaar, H. S. C. (2016). The green reduction of graphene oxide. RSC Advances, 6(33), 27807-27825. doi:10.1039/c6ra03189g

Calizo, I., Bejenari, I., Rahman, M., Liu, G., & Balandin, A. A. (2009). Ultraviolet raman microscopy of single and multilayer graphene. Journal of Applied Physics, 106(4) doi:10.1063/1.3197065

Chae, S. J., Güneş, F., Kim, K. K., Kim, E. S., Han, G. H., Kim, S. M., . . . Lee, Y. H. (2009). Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: Wrinkle formation. Advanced Materials, 21(22), 2328-2333. doi:10.1002/adma.200803016

Chaitoglou, S., & Bertran, E. (2017). Effect of temperature on graphene grown by chemical vapor deposition. Journal of Materials Science, 52(13), 8348-8356. doi:10.1007/s10853-017-1054-1

Chen, Z., Zhang, N., & Xu, Y. -. (2013). Synthesis of graphene-ZnO nanorod nanocomposites with improved photoactivity and anti-photocorrosion. CrystEngComm, 15(15), 3022-3030. doi:10.1039/c3ce27021a

Corro, G., Tellez, N., Jimenez, T., Tapia, A., Banuelos, F., & Vazquez-Cuchillo, O. (2011). Biodiesel from waste frying oil. two step process using acidified SiO 2 for esterification step. Catalysis Today, 166(1), 116-122. doi:10.1016/j.cattod.2010.09.011

Dong, X., Wang, P., Fang, W., Su, C. -., Chen, Y. -., Li, L. -., . . . Chen, P. (2011). Growth of large-sized graphene thin-films by liquid precursor-based chemical vapor deposition under atmospheric pressure. Carbon, 49(11), 3672-3678. doi:10.1016/j.carbon.2011.04.069

Fang, L., Yuan, W., Wang, B., & Xiong, Y. (2016). Growth of graphene on cu foils by microwave plasma chemical vapor deposition: The effect of in-situ hydrogen plasma post-treatment. Applied Surface Science, 383, 28-32. doi:10.1016/j.apsusc.2016.04.148

García, J. M., He, R., Jiang, M. P., Kim, P., Pfeiffer, L. N., & Pinczuk, A. (2011). Multilayer graphene grown by precipitation upon cooling of nickel on diamond. Carbon, 49(3), 1006-1012. doi:10.1016/j.carbon.2010.11.008

Ghorannevis, Z., Jafari, A., Alipour, R., & Ghoranneviss, M. (2015). The effects of growth time on WO 3 nanostructure synthesized by HFCVD method. Journal of Fusion Energy, 34(5), 1157-1161. doi:10.1007/s10894-015-9935-2

Gutierrez, G., Le Normand, F., Muller, D., Aweke, F., Speisser, C., Antoni, F., . . . Cojocaru, C. S. (2014). Multi-layer graphene obtained by high temperature carbon implantation into nickel films. Carbon, 66, 1-10. doi:10.1016/j.carbon.2013.07.106

Hong, R., Ji, J., Tao, C., Zhang, D., & Zhang, D. (2017). Fabrication of Au/graphene oxide/Ag sandwich structure thin film and its tunable energetics and tailorable optical properties. AIMS Materials Science, 4(1), 223-230. doi:10.3934/matersci.2017.1.223

Jabbar, A., Yasin, G., Khan, W. Q., Anwar, M. Y., Korai, R. M., Nizam, M. N., & Muhyodin, G. (2017). Electrochemical deposition of nickel graphene composite coatings effect of deposition temperature on its surface morphology and corrosion resistance. RSC Advances, 7(49), 31100-31109. doi:10.1039/c6ra28755g

Jacob, M. V., Rawat, R. S., Ouyang, B., Bazaka, K., Kumar, D. S., Taguchi, D., . . . Varghese, O. K. (2015). Catalyst-free plasma enhanced growth of graphene from sustainable sources. Nano Letters, 15(9), 5702-5708. doi:10.1021/acs.nanolett.5b01363

Jafari, A., Ghoranneviss, M., Gholami, M., & Mostahsan, N. (2015). The role of deposition temperature and catalyst thickness in graphene domains on cu. Int.Nano Lett., 5(4), 199-204. Retrieved from www.scopus.com

Kanahashi, K., Ishihara, M., Hasegawa, M., Ohta, H., & Takenobu, T. (2019). Giant power factors in p- and n-type large-area graphene films on a flexible plastic substrate. Npj 2D Materials and Applications, 3(1) doi:10.1038/s41699-019-0128-0

Kudin, K. N., Ozbas, B., Schniepp, H. C., Prud'homme, R. K., Aksay, I. A., & Car, R. (2008). Raman spectra of graphite oxide and functionalized graphene sheets. Nano Letters, 8(1), 36-41. doi:10.1021/nl071822y

Kumar, M. K., Jha, N. S., Mohan, S., & Jha, S. K. (2014). Reduced graphene oxide-supported nickel oxide catalyst with improved CO tolerance for formic acid electrooxidation. International Journal of Hydrogen Energy, 39(24), 12572-12577. doi:10.1016/j.ijhydene.2014.05.174

Kumar, R., Singh, R. K., Kumar, P., Dubey, P. K., Tiwari, R. S., & Srivastava, O. N. (2014). Clean and efficient synthesis of graphene nanosheets and rectangular aligned-carbon nanotubes bundles using green botanical hydrocarbon precursor: Sesame oil. Science of Advanced Materials, 6(1), 76-83. doi:10.1166/sam.2014.1682

Lai, Q., Zhu, S., Luo, X., Zou, M., & Huang, S. (2012). Ultraviolet-visible spectroscopy of graphene oxides. AIP Advances, 2(3) doi:10.1063/1.4747817

Lapuerta, M., Herreros, J. M., Lyons, L. L., García-Contreras, R., & Briceño, Y. (2008). Effect of the alcohol type used in the production of waste cooking oil biodiesel on diesel performance and emissions. Fuel, 87(15-16), 3161-3169. doi:10.1016/j.fuel.2008.05.013

Lee, H. C., Liu, W. -., Chai, S. -., Mohamed, A. R., Lai, C. W., Khe, C. -., . . . Hidayah, N. M. S. (2016). Synthesis of single-layer graphene: A review of recent development. Procedia Chem., 19, 916-921. Retrieved from www.scopus.com

Li, W. Z., Wen, J. G., & Ren, Z. F. (2002). Effect of temperature on growth and structure of carbon nanotubes by chemical vapor deposition. Applied Physics A: Materials Science and Processing, 74(3), 397-402. doi:10.1007/s003390201284

Liu, P., White, K. L., Sugiyama, H., Xi, J., Higuchi, T., Hoshino, T., . . . Sue, H. -. (2013). Influence of trace amount of well-dispersed carbon nanotubes on structural development and tensile properties of polypropylene. Macromolecules, 46(2), 463-473. doi:10.1021/ma3020323

Mancini, A., Imperlini, E., Nigro, E., Montagnese, C., Daniele, A., Orrù, S., & Buono, P. (2015). Biological and nutritional properties of palm oil and palmitic acid: Effects on health. Molecules, 20(9), 17339-17361. doi:10.3390/molecules200917339

Mayne, M., Grobert, N., Terrones, M., Kamalakaran, R., Rühle, M., Kroto, H. W., & Walton, D. R. M. (2001). Pyrolytic production of aligned carbon nanotubes from homogeneously dispersed benzene-based aerosols. Chemical Physics Letters, 338(2-3), 101-107. doi:10.1016/S0009-2614(01)00278-0

Meesuk, L., & Seammai, S. (2010). The use of perlite to remove dark colour from repeatedly used palm oil. ScienceAsia, 36(1), 33-39. doi:10.2306/scienceasial513-1874.2010.36.033

Mennella, V., Colangeli, L., Bussoletti, E., Merluzzi, P., Monaco, G., Palumbo, P., & Rotundi, A. (1995). Laboratory experiments on cosmic dust analogues: The structure of small carbon grains. Planetary and Space Science, 43(10-11), 1217-1221. doi:10.1016/0032-0633(95)00013-U

Mishra, A. K., & Ramaprabhu, S. (2011). Carbon dioxide adsorption in graphene sheets. AIP Advances, 1(3) doi:10.1063/1.3638178

Mittal, G., Dhand, V., Rhee, K. Y., Park, S. -., & Lee, W. R. (2015). A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. Journal of Industrial and Engineering Chemistry, 21, 11-25. doi:10.1016/j.jiec.2014.03.022

Mun, J. H., Hwang, C., Lim, S. K., & Cho, B. J. (2010). Optical reflectance measurement of large-scale graphene layers synthesized on nickel thin film by carbon segregation. Carbon, 48(2), 447-451. doi:10.1016/j.carbon.2009.09.058

Nanda, S. S., Kim, M. J., Yeom, K. S., An, S. S. A., Ju, H., & Yi, D. K. (2016). Raman spectrum of graphene with its versatile future perspectives. TrAC - Trends in Analytical Chemistry, 80, 125-131. doi:10.1016/j.trac.2016.02.024

Narula, U., Tan, C. M., & Lai, C. S. (2017). Growth mechanism for low temperature PVD graphene synthesis on copper using amorphous carbon. Scientific Reports, 7 doi:10.1038/srep44112

Perumbilavil, S., Sankar, P., Priya Rose, T., & Philip, R. (2015). White light Z-scan measurements of ultrafast optical nonlinearity in reduced graphene oxide nanosheets in the 400-700 nm region. Applied Physics Letters, 107(5) doi:10.1063/1.4928124

Phan, A. N., & Phan, T. M. (2008). Biodiesel production from waste cooking oils. Fuel, 87(17-18), 3490-3496. doi:10.1016/j.fuel.2008.07.008

Raghavan, N., Thangavel, S., & Venugopal, G. (2015). Enhanced photocatalytic degradation of methylene blue by reduced graphene-oxide/titanium dioxide/zinc oxide ternary nanocomposites. Materials Science in Semiconductor Processing, 30, 321-329. doi:10.1016/j.mssp.2014.09.019

Rajagopalan, B., & Chung, J. S. (2014). Reduced chemically modified graphene oxide for supercapacitor electrode. Nanoscale Research Letters, 9(1) doi:10.1186/1556-276X-9-535

Refaat, A. A. (2010). Different techniques for the production of biodiesel from waste vegetable oil. International Journal of Environmental Science and Technology, 7(1), 183-213. doi:10.1007/BF03326130

Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., . . . Jing, K. (2009). Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Letters, 9(1), 30-35. doi:10.1021/nl801827v

Russo, C., Stanzione, F., Alfè, M., Ciajolo, A., & Tregrossi, A. (2012). Spectral analysis in the UV-visible range for revealing the molecular form of combustion-generated carbonaceous species. Combustion Science and Technology, 184(7-8), 1219-1231. doi:10.1080/00102202.2012.664315

Salifairus, M. J., Abd Hamid, S. B., Soga, T., Alrokayan, S. A. H., Khan, H. A., & Rusop, M. (2016). Structural and optical properties of graphene from green carbon source via thermal chemical vapor deposition. Journal of Materials Research, 31(13), 1947-1956. doi:10.1557/jmr.2016.200

Sanli, H., Canakci, M., & Alptekin, E. (2011). Characterization of waste frying oils obtained from different facilities. World Renewable Energy Congress, (13), 479-485. Retrieved from www.scopus.com

Sharma, S., Kalita, G., Hirano, R., Hayashi, Y., & Tanemura, M. (2013). Influence of gas composition on the formation of graphene domain synthesized from camphor. Materials Letters, 93, 258-262. doi:10.1016/j.matlet.2012.11.090

Sharma, S., Kalita, G., Hirano, R., Shinde, S. M., Papon, R., Ohtani, H., & Tanemura, M. (2014). Synthesis of graphene crystals from solid waste plastic by chemical vapor deposition. Carbon, 72, 66-73. doi:10.1016/j.carbon.2014.01.051

Song, X., Song, L., Chen, X., & Zhang, T. (2016). The characterization of graphene prepared using a nickel film catalyst pre-deposited to fused silica. RSC Advances, 6(27), 22244-22249. doi:10.1039/c5ra26875c

Suriani, A. B., Md Nor, R., & Rusop, M. (2010). Vertically aligned carbon nanotubes synthesized from waste cooking palm oil. Journal of the Ceramic Society of Japan, 118(1382), 963-968. doi:10.2109/jcersj2.118.963

Tsai, T. -., Tai, N. -., Chen, K. C., Lee, S. H., Chan, L. H., & Chang, Y. Y. (2009). Growth of vertically aligned carbon nanotubes on glass substrate at 450 °C through the thermal chemical vapor deposition method. Diamond and Related Materials, 18(2-3), 307-311. doi:10.1016/j.diamond.2008.09.001

Vinayan, B. P., Nagar, R., & Ramaprabhu, S. (2013). Solar light assisted green synthesis of palladium nanoparticle decorated nitrogen doped graphene for hydrogen storage application. Journal of Materials Chemistry A, 1(37), 11192-11199. doi:10.1039/c3ta12016c

Woods, C. R., Britnell, L., Eckmann, A., Ma, R. S., Lu, J. C., Guo, H. M., . . . Novoselov, K. S. (2014). Commensurate-incommensurate transition in graphene on hexagonal boron nitride. Nature Physics, 10(6), 451-456. doi:10.1038/nphys2954

Wu, C., Li, F., Chen, W., Veeramalai, C. P., Ooi, P. C., & Guo, T. (2015). Electromagnetic induction heating for single crystal graphene growth: Morphology control by rapid heating and quenching. Scientific Reports, 5 doi:10.1038/srep09034

Zaharudin, R. R. N. A., Esivan, S. M. M., Othman, N., & Idris, A. (2016). Review on the potential use of waste cooking palm oil in the production of high oleic palm oil via enzymatic acidolysis. J Teknol, 12, 85-99. Retrieved from www.scopus.com

Zhang, H., & Feng, P. X. (2010). Fabrication and characterization of few-layer graphene. Carbon, 48(2), 359-364. doi:10.1016/j.carbon.2009.09.037


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries with this repository, kindly contact us at pustakasys@upsi.edu.my or Whatsapp +60163630263 (Office hours only)