UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
PbTiO3 has emerged as a promising material for the thermoelectric application. In this study, we proposed to use density functional theory to investigate the underlying mechanism for improving the thermoelectric efficiency of ATiO3. The thermoelectric parameters of the designed surface structures have been obtained by using the Boltzmann transport equation approximation. The properties of the structure, electronic, and thermoelectricity were measured and analyzed. The surface (001) modification through the AO termination layer has increased the electrical conductivity, thus increasing the power factor. On the other hand, increasing the Seebeck coefficient, which is aided by declining thermal conductivity, which is aided by low thermopower, improves the figure of merit. It is shown that the thermoelectric performance of surface (001) SnTiO3 is higher as compared to PbTiO3 making it interesting towards lead-free materials in thin-film application. ? 2021 Elsevier B.V. |
References |
Alam, N. N., Malik, N. A., Hussin, N. H., Ali, A. M. M., Hassan, O. H., Yahya, M. Z. A., & Taib, M. F. M. (2020). , 281-288. Retrieved from www.scopus.com Alam, N. N., Malik, N. A., Samat, M. H., Mohyedin, M. Z., Hussin, N. H., Ali, A. M. M., . . . Taib, M. F. M. (2020). First principles study on structural and electronic properties of cubic (Pm3m) and tetragonal (P4mm) ATiO3 (A=Pb, sn). Sci.Res.J., 17, 149. Retrieved from www.scopus.com Alshoaibi, A., Kanoun, M. B., Ul Haq, B., Alfaify, S., & Goumri-Said, S. (2020). Insights into the impact of yttrium doping at the ba and ti sites of BaTiO3on the electronic structures and optical properties: A first-principles study. ACS Omega, 5(25), 15502-15509. doi:10.1021/acsomega.0c01638 Alshoaibi, A., Kanoun, M. B., Ul Haq, B., AlFaify, S., & Goumri-Said, S. (2020). Ytterbium doping effects into the ba and ti sites of perovskite barium titanate: Electronic structures and optical properties. Results in Physics, 18 doi:10.1016/j.rinp.2020.103257 Azam, S., Goumri-Said, S., Khan, S. A., Ozisik, H., Deligoz, E., Kanoun, M. B., & Khan, W. (2020). Electronic structure and related optical, thermoelectric and dynamical properties of lilianite-type Pb7Bi4Se13: Ab-initio and boltzmann transport theory. Materialia, 10 doi:10.1016/j.mtla.2020.100658 Azam, S., Khan, S. A., & Goumri-Said, S. (2018). Optoelectronic and thermoelectric properties of Bi2OX 2 (X = S, se, te) for solar cells and thermoelectric devices. Journal of Electronic Materials, 47(5), 2513-2518. doi:10.1007/s11664-018-6092-1 Benazouzi, Y., Rozale, H., Boukli Hacene, M. A., Khethir, M., Chahed, A., & Lucache, D. (2019). Electronic and thermoelectric properties in li-based half-heusler compounds: A first principle study. Ann West Univ Timisoara Phys Ser, 61, 44-55. Retrieved from www.scopus.com Blaha, P., Schwarz, K., Madsen, G. K., Kvasnicka, D., & Luitz, J. (2001). Retrieved from www.scopus.com Chen, X., Zhang, A., Wang, J., Luo, Q., Tang, G., Zhang, J., & Bai, D. (2019). Band alignments and polarization properties in ZnO (112¯0)/PbTiO3 (001) heterostructures. Vacuum, 166, 264-269. doi:10.1016/j.vacuum.2019.05.013 Cuevas-Saavedra, R., & Staroverov, V. N. (2016). Exact expressions for the kohn-sham exchange-correlation potential in terms of wave-function-based quantities. Molecular Physics, 114(7-8), 1050-1058. doi:10.1080/00268976.2015.1131861 Dresselhaus, M. S., Lin, Y. M., Cronin, S. B., Black, M. R., Rabin, O., & Dresselhaus, G. (2001). Investigation of low-dimensional thermoelectrics. Retrieved from www.scopus.com D'Souza, R., Cao, J., Querales-Flores, J. D., Fahy, S., & Savić, I. (2020). Electron-phonon scattering and thermoelectric transport in p -type PbTe from first principles. Physical Review B, 102(11) doi:10.1103/PhysRevB.102.115204 Eglitis, R. I. (2019). Ab initio calculations of CaZrO3, BaZrO3, PbTiO3 and SrTiO3 (001), (011) and (111) surfaces as well as their (001) interfaces. Integrated Ferroelectrics, 196(1), 7-15. doi:10.1080/10584587.2019.1591976 Eglitis, R. I. (2015). Ab initio hybrid DFT calculations of BaTiO 3 , PbTiO 3 , SrZrO 3 and PbZrO 3 (111) surfaces. Applied Surface Science, 358, 556-562. doi:10.1016/j.apsusc.2015.08.010 Eglitis, R. I., & Vanderbilt, D. (2007). Ab initio calculations of BaTi O3 and PbTi O3 (001) and (011) surface structures. Physical Review B - Condensed Matter and Materials Physics, 76(15) doi:10.1103/PhysRevB.76.155439 Fang, H., Wang, Y., Shang, S., & Liu, Z. -. (2015). Nature of ferroelectric-paraelectric phase transition and origin of negative thermal expansion in PbTi O3. Physical Review B - Condensed Matter and Materials Physics, 91(2) doi:10.1103/PhysRevB.91.024104 Fang, H., Wang, Y., Shang, S., & Liu, Z. -. (2015). Nature of ferroelectric-paraelectric phase transition and origin of negative thermal expansion in PbTi O3. Physical Review B - Condensed Matter and Materials Physics, 91(2) doi:10.1103/PhysRevB.91.024104 Fu, Y., & Singh, D. J. (2018). Retrieved from www.scopus.com Garrity, K., Kakekhani, A., Kolpak, A., & Ismail-Beigi, S. (2013). Ferroelectric surface chemistry: First-principles study of the PbTiO 3 surface. Physical Review B - Condensed Matter and Materials Physics, 88(4) doi:10.1103/PhysRevB.88.045401 Ghazanfar, M., Azam, S., Nasir, M. F., Goumri-Said, S., & Alrobei, H. (2021). Insight into electronic and optical properties of Eu+2-doped CaTiO3 from GGA+U calculations. Journal of Solid State Chemistry, 293 doi:10.1016/j.jssc.2020.121796 Goumri-Said, S., Azam, S., Khan, S. A., & Kanoun, M. B. (2019). Density functional theory within spin-orbit coupling and hubbard correction for investigation of optoelectronic properties of the orthorhombic perovskite LaPdO 3. Computational Condensed Matter, 21 doi:10.1016/j.cocom.2019.e00396 Hosseini, S. M., Movlarooy, T., & Kompany, A. (2007). First-principle calculations of the cohesive energy and the electronic properties of PbTiO3. Physica B: Condensed Matter, 391(2), 316-321. doi:10.1016/j.physb.2006.10.013 Jaldurgam, F. F., Ahmad, Z., & Touati, F. (2021). Low‐toxic, earth‐abundant nanostructured materials for thermoelectric applications. Nanomaterials, 11(4) doi:10.3390/nano11040895 Kuma, S., & Woldemariam, M. M. (2019). Structural, electronic, lattice dynamic, and elastic properties of SnTiO3 and PbTiO3 using density functional theory. Advances in Condensed Matter Physics, 2019 doi:10.1155/2019/3176148 Kuroiwa, Y., Aoyagi, S., Sawada, A., Harada, J., Nishibori, E., Takata, M., & Sakata, M. (2001). Evidence for pb-O covalency in tetragonal PbTiO3. Physical Review Letters, 87(21), 2176011-2176014. Retrieved from www.scopus.com Madsen, G. K. H., & Singh, D. J. (2006). BoltzTraP. A code for calculating band-structure dependent quantities. Computer Physics Communications, 175(1), 67-71. doi:10.1016/j.cpc.2006.03.007 Meyer, B., Padilla, J., & Vanderbilt, D. (1999). Theory of PbTiO3, BaTiO3, and SrTiO3 surfaces. Faraday Discussions, 114, 395-405. doi:10.1039/a903029h Mohyedin, M. Z., Taib, M. F. M., Radzwan, A., Mustaffa, M., Shaari, A., Hassan, O. H., . . . Yahya, M. Z. A. (2020). Enhanced mechanism of thermoelectric performance of Bi2Se3 using density functional theory. Materials for Renewable and Sustainable Energy, 9(3) doi:10.1007/s40243-020-00176-4 Nelmes, R. J., & Kuhs, W. F. (1985). The crystal structure of tetragonal PbTiO3 at room temperature and at 700 K. Solid State Communications, 54(8), 721-723. doi:10.1016/0038-1098(85)90595-2 Nishimatsu, T., Iwamoto, M., Kawazoe, Y., & Waghmare, U. V. (2010). First-principles accurate total energy surfaces for polar structural distortions of BaTiO3, PbTiO3, and SrTiO3: Consequences for structural transition temperatures. Physical Review B - Condensed Matter and Materials Physics, 82(13) doi:10.1103/PhysRevB.82.134106 Noor, N. A., Mahmood, Q., Rashid, M., Ul Haq, B., Laref, A., & Ahmad, S. A. (2018). Ab-initio study of thermodynamic stability, thermoelectric and optical properties of perovskites ATiO3 (A=Pb, sn). Journal of Solid State Chemistry, 263, 115-122. doi:10.1016/j.jssc.2018.04.017 Padilla, J., & Vanderbilt, D. (1997). Ab initio study of BaTi surfaces. Physical Review B - Condensed Matter and Materials Physics, 56(3), 1625-1631. doi:10.1103/PhysRevB.56.1625 Park, K. H., Mohamed, M., Aksamija, Z., & Ravaioli, U. (2015). Phonon scattering due to van der waals forces in the lattice thermal conductivity of Bi2Te3 thin films. Journal of Applied Physics, 117(1) doi:10.1063/1.4905294 Peng, L., & Liu, Z. (2019). Enhancing thermoelectric properties by using a surface polarization effect based on PEDOT:PSS thin films. Journal of Materials Chemistry C, 7(20), 6120-6128. doi:10.1039/c8tc06616g Pilania, G., & Ramprasad, R. (2010). Adsorption of atomic oxygen on cubic PbTiO3 and LaMnO 3 (001) surfaces: A density functional theory study. Surface Science, 604(21-22), 1889-1893. doi:10.1016/j.susc.2010.07.021 Rahman, G., & Rahman, A. U. (2017). Thermoelectric properties of n and p-type cubic and tetragonal XTiO3 (X = ba,pb): A density functional theory study. Physica B: Condensed Matter, 526, 122-126. doi:10.1016/j.physb.2017.07.044 Roy, A. (2016). Estimates of the thermal conductivity and the thermoelectric properties of PbTiO3 from first principles. Physical Review B, 93(10) doi:10.1103/PhysRevB.93.100101 Scheidemantel, J., Ambrosch-Draxl, C., Thonhauser, T., Badding, V., & Sofo, O. (2003). Transport coefficients from first-principles calculations. Physical Review B - Condensed Matter and Materials Physics, 68(12) doi:10.1103/PhysRevB.68.125210 Sifuna, J., García-Fernández, P., Manyali, G. S., Amolo, G., & Junquera, J. (2020). First-principles study of two-dimensional electron and hole gases at the head-to-head and tail-to-tail 180° domain walls in PbTiO3 ferroelectric thin films. Physical Review B, 101(17) doi:10.1103/PHYSREVB.101.174114 Somaily, H. H. (2018). Retrieved from www.scopus.com Taib, M. F. M., Yaakob, M. K., Badrudin, F. W., Kudin, T. I. T., Hassan, O. H., & Yahya, M. Z. A. (2013). First-principles calculation of the structural, elastic, electronic and lattice dynamics of GeTiO3. Ferroelectrics, 452(1), 122-128. doi:10.1080/00150193.2013.841525 Taib, M. F. M., Yaakob, M. K., Badrudin, F. W., Rasiman, M. S. A., Kudin, T. I. T., Hassan, O. H., & Yahya, M. Z. A. (2014). First-principles comparative study of the electronic and optical properties of tetragonal (P4mm) ATiO3 (A = pb,sn,ge). Integrated Ferroelectrics, 155(1), 23-32. doi:10.1080/10584587.2014.905105 Taib, M. F. M., Yaakob, M. K., Chandra, A., Arof, A. K., & Yahya, M. Z. A. (2012). Effect of pressure on structural, electronic and elastic properties of cubic (Pm3m) SnTiO 3 using first principle calculation doi:10.4028/www.scientific.net/AMR.501.342 Retrieved from www.scopus.com Taib, M. F. M., Yaakob, M. K., Hassan, O. H., Chandra, A., Arof, A. K., & Yahya, M. Z. A. (2013). First principles calculation on structural and lattice dynamic of SnTiO3 and SnZrO3. Ceramics International, 39(SUPPL.1), S297-S300. doi:10.1016/j.ceramint.2012.10.081 Taib, M. F. M., Yaakob, M. K., Hassan, O. H., & Yahya, M. Z. A. (2013). Structural, electronic, and lattice dynamics of PbTiO3, SnTiO3, and SnZrO3: A comparative first-principles study. Integrated Ferroelectrics, 142(1), 119-127. doi:10.1080/10584587.2013.780528 Takeuchi, T. (2009). Conditions of electronic structure to obtain large dimensionless figure of merit for developing practical thermoelectric materials. Materials Transactions, 50(10), 2359-2365. doi:10.2320/matertrans.M2009143 Tang, X., Wang, X., Cattley, R., Gu, F., & Ball, A. D. (2018). Energy harvesting technologies for achieving self-powered wireless sensor networks in machine condition monitoring: A review. Sensors (Basel, Switzerland), 18(12) doi:10.3390/s18124113 Torres, P., Seijas-Bellido, J. A., Escorihuela-Sayalero, C., Íñiguez, J., & Rurali, R. (2019). Theoretical investigation of lattice thermal conductivity and electrophononic effects in SrTiO3. Physical Review Materials, 3(4) doi:10.1103/PhysRevMaterials.3.044404 Wang, L., Yuan, P., Wang, F., Liang, E., Sun, Q., Guo, Z., & Jia, Y. (2014). First-principles study of tetragonal PbTiO3: Phonon and thermal expansion. Materials Research Bulletin, 49(1), 509-513. doi:10.1016/j.materresbull.2013.08.075 Wang, Y. X., Arai, M., Sasaki, T., Wang, C. L., & Zhong, W. L. (2005). First-principles study on the (0 0 1) surface of cubic PbZrO3 and PbTiO3. Surface Science, 585(1-2), 75-84. doi:10.1016/j.susc.2005.04.015 Wu, T., & Gao, P. (2018). Development of perovskite-type materials for thermoelectric application. Materials, 11(6) doi:10.3390/ma11060999 Xing, G., Sun, J., Ong, K. P., Fan, X., Zheng, W., & Singh, D. J. (2016). Perspective: N -type oxide thermoelectrics via visual search strategies. APL Materials, 4(5) doi:10.1063/1.4941711 Zhang, Y., Heo, Y. -., Park, M., & Park, S. -. (2019). Recent advances in organic thermoelectric materials: Principle mechanisms and emerging carbon-based green energy materials. Polymers, 11(1) doi:10.3390/polym11010167 Zhang, Y., Heo, Y. -., Park, M., & Park, S. -. (2019). Recent advances in organic thermoelectric materials: Principle mechanisms and emerging carbon-based green energy materials. Polymers, 11(1) doi:10.3390/polym11010167 Zhong, M., Zeng, W., Liu, F. -., Tang, B., & Liu, Q. -. (2019). First-principles study of the atomic structures, electronic properties, and surface stability of BaTiO3 (001) and (011) surfaces. Surface and Interface Analysis, 51(10), 1021-1032. doi:10.1002/sia.6688 Zoui, M. A., Bentouba, S., Stocholm, J. G., & Bourouis, M. (2020). A review on thermoelectric generators: Progress and applications. Energies, 13(14) doi:10.3390/en13143606 |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |