UPSI Digital Repository (UDRep)
Start | FAQ | About

QR Code Link :

Type :article
Subject :Q Science
ISSN :0023-6438
Main Author :Suzita Ramli
Additional Authors :Shakinaz Desa
Title :Use of Centella asiatica extract in reducing microbial contamination and browning effect in fresh cut fruits and vegetables during storage: a potential alternative of synthetic preservatives
Place of Production :Tanjung Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2021
Notes :LWT
Corporate Name :Universiti Pendidikan Sultan Idris
Web Link :Click to view web link
PDF Full Text :Login required to access this item.

Abstract : Universiti Pendidikan Sultan Idris
The study was focused on the effectiveness of Centella asiatica extract in microbial reduction and retarding browning formation of the samples obtained from fresh-cut fruits and vegetables (FCFV) during room temperature displayed (RTD) and chilled storage (CS). The microbial and color analyses were done in hour-basis (room temperature displayed) and daily basis (chilled storage). Candida albicans (6.77 log CFU/mL), Bacillus cereus (6.34 log CFU/mL), Escherichia coli O157:H7 (6.46 log CFU/mL) and Aspergillus niger (5.34 log CFU/mL) were specifically inoculated in apple, potato, lettuce, and pineapple, respectively. In room temperature displayed samples, the population of survival microorganisms ranged from 4.44 to 6.90 log CFU/g. In chilled stored samples, only A. niger was survived in chilled pineapple (3.00 log CFU/g) when storage end. Browning indexes in room temperature displayed and chilled stored samples ranged from 8.06 to 9.26 and 5.00 to 12.68, respectively. In short, low temperature and sufficient extract-treated periods may effectively inhibit microbial growth and browning index to prevent quality deterioration of fresh-cut fruits and vegetables. ? 2021 Elsevier Ltd

References

“Danger zone” (40 °F - 140 °F). food safety inspection service: United states department of agriculture. (2017). Retrieved from www.scopus.com

Agriopoulou, S., Stamatelopoulou, E., Sachadyn-Król, M., & Varzakas, T. (2020). Lactic acid bacteria as antibacterial agents to extend the shelf life of fresh and minimally processed fruits and vegetables: Quality and safety aspects. Microorganisms, 8(6), 1-23. doi:10.3390/microorganisms8060952

Akbas, M. Y., & Ölmez, H. (2007). Inactivation of escherichia coli and listeria monocytogenes on iceberg lettuce by dip wash treatments with organic acids. Letters in Applied Microbiology, 44(6), 619-624. doi:10.1111/j.1472-765X.2007.02127.x

Al-Amrani, M., Al-Alawi, A., & Al-Marhobi, I. (2020). Assessment of enzymatic browning and evaluation of antibrowning methods on dates. International Journal of Food Science, 2020 doi:10.1155/2020/8380461

Aryal, S., Baniya, M. K., Danekhu, K., Kunwar, P., Gurung, R., & Koirala, N. (2019). Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from western nepal. Plants, 8(4) doi:10.3390/plants8040096

Bondi, M., Lauková, A., De Niederhausern, S., Messi, P., & Papadopoulou, C. (2017). Natural preservatives to improve food quality and safety. Journal of Food Quality, 2017 doi:10.1155/2017/1090932

Choi, M. -., Jeong, S. -., Liu, Q., Ban, G. -., Lee, S. -., Park, J. -., & Kang, D. -. (2015). Effect of thiamine dilaurylsulfate against escherichia coli O157:H7, salmonella typhimurium, listeria monocytogenes and bacillus cereus spores in custard cream. LWT, 60(1), 320-324. doi:10.1016/j.lwt.2014.09.040

Colangelo, M. A., Caruso, M. C., Favati, F., Scarpa, T., Condelli, N., & Galgano, F. (2015). Electrolysed water in the food industry as supporting of environmental sustainability. The sustainability of agro-food and natural resource systems in the mediterranean basin (pp. 385-397) doi:10.1007/978-3-319-16357-4_25 Retrieved from www.scopus.com

Dar, R. A., Brahman, P. K., Khurana, N., Wagay, J. A., Lone, Z. A., Ganaie, M. A., & Pitre, K. S. (2017). Evaluation of antioxidant activity of crocin, podophyllotoxin and kaempferol by chemical, biochemical and electrochemical assays. Arabian Journal of Chemistry, 10, S1119-S1128. doi:10.1016/j.arabjc.2013.02.004

Desa, S., Khalaf, A. A., & Baharum, S. N. (2021). Identification of bioactive compounds from seeds oil of agricultural waste in malaysia. International Journal of Pharmaceutical Research, 13, 2058-2064. Retrieved from www.scopus.com

Dodson, S. B., Boyer, R. R., Chase, M., Eifert, J., Eifert, J., Strawn, L., & Villalba, A. (2015). Safe handling and storing of raw fruits and vegetables. Safe Handling and Storing of Raw Fruits and Vegetables, Retrieved from www.scopus.com

Edgar, S. A. (2014). Analysis of phenolics centella asiatica from and vernonia amygdalina and their role as antibacterial and antioxidant compounds. Analysis of Phenolics from Centella Asiatica and Vernonia Amygdalina and their Roles as Antibacterial and Antioxidant Compounds, Retrieved from www.scopus.com

Gourama, H. (2020). Foodborne pathogens doi:10.1007/978-3-030-42660-6_2 Retrieved from www.scopus.com

Hoornstra, D., Andersson, M. A., Teplova, V. V., Mikkola, R., Uotila, L. M., Andersson, L. C., . . . Salkinoja-Salonen, M. S. (2013). Potato crop as a source of emetic bacillus cereus and cereulide-induced mammalian cell toxicity. Applied and Environmental Microbiology, 79(12), 3534-3543. doi:10.1128/AEM.00201-13

Irkin, R., & Korukluoglu, M. (2009). Growth inhibition of pathogenic bacteria and some yeasts by selected essential oils and survival of l. monocytogenes and C. albicans in apple-carrot juice. Foodborne Pathogens and Disease, 6(3), 387-394. doi:10.1089/fpd.2008.0195

Jabeen, N., & Shahzad, K. (2019). Studies on identification of the food borne fungal pathogens and their pathogenic effects on human health. Acta Scientific Agriculture, 3, 186-191. Retrieved from www.scopus.com

Jadid, N., Hidayati, D., Hartanti, S. R., Arraniry, B. A., Rachman, R. Y., & Wikanta, W. (2017). Antioxidant activities of different solvent extracts of piper retrofractum vahl. using DPPH assay. Paper presented at the AIP Conference Proceedings, , 1854 doi:10.1063/1.4985410 Retrieved from www.scopus.com

James, J. B., & Ngarmsak, T. (2010). Processing of fresh-cut tropical fruits and vegetables: A technical guide. Processing of Fresh-Cut Tropical Fruits and Vegetables: A Technical Guide, Retrieved from www.scopus.com

Khalaf, A. A., Desa, S., & Baharum, S. N. (2019). Overview of selected native seeds in agricultural wastes and its properties. Medico-Legal Update, 19, 324-330. Retrieved from www.scopus.com

Kim, S. (2020). Antioxidant compounds for the inhibition of enzymatic browning by polyphenol oxidases in the fruiting body extract of the edible mushroom hericium erinaceus. Foods, 9(7) doi:10.3390/foods9070951

Kortei, N. K., Odamtenn, G. T., Obodai, M., Appiah, V., & Akonor, P. T. (2015). Determination of color parameters of gamma irradiated fresh and dried mushrooms during storage. Croat J Food Technol Biotechnol Nutr, 10(1-2), 66-71. Retrieved from www.scopus.com

Krasnova, I., Seglina, D., & Pole, V. (2018). The effect of pre-treatment methods on the quality of dehydrated candied japanese quince fruits during storage. Journal of Food Science and Technology, 55(11), 4468-4476. doi:10.1007/s13197-018-3375-8

Kuan, C. H., Lim, L. W. K., Ting, T. W., Rukayadi, Y., Ahmad, S. H., Wan Mohamed Radzi, C. W. J., . . . Radu, S. (2017). Simulation of decontamination and transmission of escherichia coli O157:H7, salmonella enteritidis, and listeria monocytogenes during handling of raw vegetables in domestic kitchens. Food Control, 80, 395-400. doi:10.1016/j.foodcont.2017.05.029

LaBorde, L. (2014). Proper care and handling: Fruits and vegetables from harvest to purchase to preparation. college of agricultural science. Proper Care and Handling: Fruits and Vegetables from Harvest to Purchase to Preparation, Retrieved from www.scopus.com

Lampel, K. A., Al-Khaldi, S., & Cahill, S. M. (2012). Bad bug book: Foodborne pathogenic microorganisms and natural toxins, 2nd ed. Bad Bug Book, Retrieved from www.scopus.com

Le, T. T., Vo, T. K., & Nguyen, H. H. (2018). Evaluation of two eco-friendly botanical extracts on fruit rot pathogens of orange (citrus sinesis (L.) osbeck). Journal of Vietnamese Environment, 10, 107-112. Retrieved from www.scopus.com

Lucera, A., Costa, C., Conte, A., & Del Nobile, M. A. (2012). Food applications of natural antimicrobial compounds. Frontiers in Microbiology, 3(AUG) doi:10.3389/fmicb.2012.00287

Mailafia, S., Okoh, G. R., Olabode, H. O. K., & Osanupin, R. (2017). Isolation and identification of fungi associated with spoilt fruits vended in gwagwalada market, abuja, nigeria. Veterinary World, 10(4), 393-397. doi:10.14202/vetworld.2017.393-397

Manolopoulou, E., & Varzakas, T. (2016). Effect of temperature in color changes of green vegetables. Current Research in Nutrition and Food Science, 4(SpecialIssue2), 10-17. doi:10.12944/CRNFSJ.4.Special-Issue-October.02

Mir, S. A., Shah, M. A., Mir, M. M., Dar, B. N., Greiner, R., & Roohinejad, S. (2018). Microbiological contamination of ready-to-eat vegetable salads in developing countries and potential solutions in the supply chain to control microbial pathogens. Food Control, 85, 235-244. doi:10.1016/j.foodcont.2017.10.006

Mohammad Azmin, S. N. H., & Mat Nor, M. S. (2020). Chemical fingerprint of centella Asiatica’s bioactive compounds in the ethanolic and aqueous extracts. Adv.Biomark.Sci.Technol., 2, 35-44. Retrieved from www.scopus.com

Moore, K. L., Patel, J., Jaroni, D., Friedman, M., & Ravishankar, S. (2011). Antimicrobial activity of apple, hibiscus, olive, and hydrogen peroxide formulations against salmonella enterica on organic leafy greens. Journal of Food Protection, 74(10), 1676-1683. doi:10.4315/0362-028X.JFP-11-174

Moreira, M. R., Cassani, L., Martín-Belloso, O., & Soliva-Fortuny, R. (2015). Effects of polysaccharide-based edible coatings enriched with dietary fiber on quality attributes of fresh-cut apples. Journal of Food Science and Technology, 52(12), 7795-7805. doi:10.1007/s13197-015-1907-z

Prakash, A., Nithyanand, P., & Vadivel, V. (2018). In vitro antibacterial activity of nut by-products against foodborne pathogens and their application in fresh-cut fruit model. Journal of Food Science and Technology, 55(10), 4304-4310. doi:10.1007/s13197-018-3373-x

Putnik, P., Bursać Kovačević, D., Herceg, K., & Levaj, B. (2017). Influence of antibrowning solutions, air exposure, and ultrasound on color changes in fresh-cut apples during storage. Journal of Food Processing and Preservation, 41(6) doi:10.1111/jfpp.13288

Qadri, O. S., Yousuf, B., & Srivastava, A. K. (2015). Fresh-cut fruits and vegetables: Critical factors influencing microbiology and novel approaches to prevent microbial risks—A review. Cogent Food and Agriculture, 1(1) doi:10.1080/23311932.2015.1121606

Rahmdel, S., Jahed-Khaniki, G., Abdollahzadeh, S. M., Shekarforoush, S. S., & Mazloomi, S. M. (2019). Development of fresh-cut apple slices enriched with probiotic strain bifidobacterium animalis subsp. lactis BB-12. Int.J.Probiot.Prebiot, 14, 37-44. Retrieved from www.scopus.com

Ramírez-Castrillón, M., Usman, L. M., Silva-Bedoya, L. M., & Osorio-Cadavid, E. (2019). Dominant yeasts associated to mango (mangifera indica) and rose apple (syzygium malaccense) fruit pulps investigated by culture-based methods. Anais Da Academia Brasileira De Ciencias, 91(4) doi:10.1590/0001-3765201920190052

Ramli, S., Radu, S., Shaari, K., & Rukayadi, Y. (2017). Antibacterial activity of ethanolic extract of syzygium polyanthum L. (salam) leaves against foodborne pathogens and application as food sanitizer. BioMed Research International, 2017 doi:10.1155/2017/9024246

Ramli, S., Xian, W. J., Azira, N., & Mutalib, A. (2020). A review: Antibacterial activities, antioxidant properties and toxicity profile of centella asiatica. Educ.JSMT, 7, 39-47. Retrieved from www.scopus.com

Shrestha, L., Kulig, B., Moscetti, R., Massantini, R., Pawelzik, E., Hensel, O., & Sturm, B. (2020). Optimisation of physical and chemical treatments to control browning development and enzymatic activity on fresh-cut apple slices. Foods, 9(1) doi:10.3390/foods9010076

Sieberi, B. M., Omwenga, G. I., Wambua, R. K., Samoei, J. C., & Ngugi, M. P. (2020). Screening of the dichloromethane: Methanolic extract of centella asiatica for antibacterial activities against salmonella typhi, escherichia coli, shigella sonnei, bacillus subtilis, and staphylococcus aureus. Scientific World Journal, 2020 doi:10.1155/2020/6378712

Sommano, S. R., Chanasut, U., & Kumpoun, W. (2019). Enzymatic browning and its amelioration in fresh-cut tropical fruits. Fresh-cut fruits and vegetables: Technologies and mechanisms for safety control (pp. 51-76) doi:10.1016/B978-0-12-816184-5.00003-3 Retrieved from www.scopus.com

Subhashree, S. N., Sunoj, S., Xue, J., & Bora, G. C. (2017). Quantification of browning in apples using colour and textural features by image analysis. Food Quality and Safety, 1(3), 221-226. doi:10.1093/fqsafe/fyx021

Tian, C., Liu, X., Chang, Y., Wang, R., Lv, T., Cui, C., & Liu, M. (2021). Investigation of the anti-inflammatory and antioxidant activities of luteolin, kaempferol, apigenin and quercetin. South African Journal of Botany, 137, 257-264. doi:10.1016/j.sajb.2020.10.022

Tomás-Barberán, F. A., Gil, M. I., Castañer, M., Artés, F., & Saltveit, M. E. (1997). Effect of selected browning inhibitors on phenolic metabolism in stem tissue of harvested lettuce. Journal of Agricultural and Food Chemistry, 45(3), 583-589. doi:10.1021/jf960478f

Tripathi, A., Sharma, N., & Sharma, V. (2013). Control of aspergillus niger (L.) van tieghem in mango: A fruit utilizing combination of yeast and chitosan (A soft fungicide). International Journal of Horticulture and Crop Science Research, 3, 43-49. Retrieved from www.scopus.com

U.S. Federal Food, & Drug Administration. (2018). Guide to minimize food safety hazards of fresh-cut produce: Draft guidance for industry. Guidance to Minimize Food Safety Hazards of Fresh-Cut Produce: Draft Guidance for Industry, Retrieved from www.scopus.com

Uscanga-Sosa, D. P., Pérez-Gago, M. B., Gómez-Merino, F. C., Herrera-Corredor, J. A., Hernández-Cázares, A. S., & Contreras-Oliva, A. (2020). Effect of antioxidants and pH on browning and firmness of minimally processed eggplant. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(1), 79-89. doi:10.15835/NBHA48111700

Witkowska, A. M., Hickey, D. K., Alonso-Gomez, M., & Wilkinson, M. (2013). Evaluation of antimicrobial activities of commercial herb and spice extracts against selected food-borne bacteria. J Food Res, 2(4), 37-54. Retrieved from www.scopus.com

Wong, J. X., & Ramli, S. (2021). Antimicrobial activity of different types of centella asiatica extracts against foodborne pathogens and food spoilage microorganisms. LWT, 142 doi:10.1016/j.lwt.2021.111026

Yadhav, M. K., Singh, S. K., Tripathi, J. S., & Tripathi, Y. B. (2017). Phytochemical screening and in-vitro antioxidant activity of centella asiatica extracts. International Journal of Phytomedicine, 9, 615-618. Retrieved from www.scopus.com

Yan, S., Yang, T., & Luo, Y. (2015). The mechanism of ethanol treatment on inhibiting lettuce enzymatic browning and microbial growth. LWT, 63(1), 383-390. doi:10.1016/j.lwt.2015.03.004


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries with this repository, kindly contact us at pustakasys@upsi.edu.my or Whatsapp +60163630263 (Office hours only)