UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
This work sets out to examine the validity and reliability of the Mathematical Modeling Attitude Scale (MMAS), a instrument measuring teachers? attitude towards mathematical modeling. A cross-sectional survey research was utilised to describe the validity and reliability of the MMAS. The population of the present study focused on Malaysian mathematics teacher in primary and secondary schools (N = 171) and this was achieved using convenience sampling. Exploratory factor analysis (EFA), confirmatory factor analysis (CFA) and Rasch analysis were utilised in analysing the data in the present work. EFA revealed that the data from the teachers had a four-factor structure: constructivism, relevance and real-life, understanding and motivation and interest. The CFA confirmed that the model fit indices established the four-factor structure of the first and second-order model. Although the Rasch analysis generally supported the finding of EFA and CFA, there was still room for improvement in terms of the rating scale and DIF criterion. ? 2021. by the authors; licensee Modestum |
References |
(2010). Common Core State Standards, Retrieved from www.scopus.com A Aziz, N. F., Ahmad, H., & Mat Nashir, I. (2019). Validation of technical and vocational teachers’ competency evaluation instrument using the rasch model. Jurnal Pendidikan Sains Dan Matematik Malaysia, 9(1), 18-25. Retrieved from www.scopus.com Ab Hamid, M. R., Sami, W., & Mohmad Sidek, M. H. (2017). Discriminant validity assessment: Use of fornell & larcker criterion versus HTMT criterion. Paper presented at the Journal of Physics: Conference Series, , 890(1) doi:10.1088/1742-6596/890/1/012163 Retrieved from www.scopus.com Adams, D., Chuah, K. M., Sumintono, B., & Mohamed, A. (2022). Students' readiness for e-learning during the COVID-19 pandemic in a south-east asian university: A rasch analysis. Asian Education and Development Studies, 11(2), 324-339. doi:10.1108/AEDS-05-2020-0100 Aiken, L. R., Jr. (1970). Attitudes toward mathematics. Review of Educational Research, 40(4), 551-596. doi:10.3102/00346543040004551 Albarracín, L. (2021). Large number estimation as a vehicle to promote mathematical modeling. Early Childhood Education Journal, 49(4), 681-691. doi:10.1007/s10643-020-01104-x Albarracín, L., & Gorgorió, N. (2020). Mathematical modeling projects oriented towards social impact as generators of learning opportunities: A case study. Mathematics, 8(11), 1-20. doi:10.3390/math8112034 Ali, A. R., Endut, A., & Embong, R. (2019). Attitude of undergraduate students towards gamification: A case study of northwest geo-political zone, nigeria. Journal of ICT in Education, 5, 9-13. Retrieved from www.scopus.com Alkhadim, G. S., Cimetta, A. D., Marx, R. W., Cutshaw, C. A., & Yaden, D. B. (2021). Validating the research-based early math assessment (REMA) among rural children in southwest united states. Studies in Educational Evaluation, 68 doi:10.1016/j.stueduc.2020.100944 Alnahdi, A. H. (2018). Rasch validation of the arabic version of the lower extremity functional scale. Disability and Rehabilitation, 40(3), 353-359. doi:10.1080/09638288.2016.1254285 Anderson, E. W., & Mittal, V. (2000). Strengthening the satisfaction-profit chain. Journal of Service Research, 3(2), 107-120. doi:10.1177/109467050032001 Araújo, J. D. L., & Lima, F. H. D. (2020). The mathematization process as object-oriented actions of a modelling activity system. Bolema: Boletim De Educação Matemática, 34(68), 847-868. Retrieved from www.scopus.com Asempapa, R. S. (2019). Development and initial psychometric properties of the mathematical modeling attitude scale. School Science and Mathematics, 119(1), 14-23. Retrieved from www.scopus.com Asempapa, R. S., & Brooks, G. P. (2022). Factor analysis and psychometric evaluation of the mathematical modeling attitude scale for teachers of mathematics. Journal of Mathematics Teacher Education, 25(2), 131-161. doi:10.1007/s10857-020-09482-0 Ayob, A., & Yasin, R. M. (2017). Factors affecting attitudes towards mathematics. International Journal of Academic Research in Business and Social Sciences, 7(11), 1100-1109. Retrieved from www.scopus.com Barquero, B., Bosch, M., & Romo, A. (2018). Mathematical modelling in teacher education: Dealing with institutional constraints. ZDM - Mathematics Education, 50(1-2), 31-43. doi:10.1007/s11858-017-0907-z Blum, W., Galbraith, P., Henn, H. -., & Niss, M. (2007). Preface Retrieved from www.scopus.com Blum, W., & Leiß, D. (2007). How do students and teachers deal with modelling problems? Mathematical Modelling (ICTMA12): Education, Engineering and Economics, , 222-231. Retrieved from www.scopus.com Brown, S. C., & Greene, J. A. (2006). The wisdom development scale: Translating the conceptual to the concrete. Journal of College Student Development, 47(1), 1-19. doi:10.1353/csd.2006.0002 Burkhardt, H. (2006). Modelling in mathematics classrooms: Reflections on past developments and the future. ZDM - International Journal on Mathematics Education, 38(2), 178-195. doi:10.1007/BF02655888 Campbell, M. J., Machin, D., & Walters, S. J. (2007). Medical statistics: A textbook for the health sciences. Medical Statistics: A Textbook for the Health Sciences, Retrieved from www.scopus.com Clarke, D. J. (2013). Contingent conceptions of accomplished practice: The cultural specificity of discourse in and about the mathematics classroom. ZDM - International Journal on Mathematics Education, 45(1), 21-33. doi:10.1007/s11858-012-0452-8 Cobb, P., & Gravemeijer, K. (2008). Experimenting to support and understand learning processes. Handbook of Design Research Methods in Education: Innovations in Science, Technology, Engineering, and Mathematics Learning and Teaching, , 68-95. Retrieved from www.scopus.com Creswell, J. W. (2003). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches, Retrieved from www.scopus.com Creswell, J. W. (2002). Educational research: Planning, conducting, and evaluating quantitative and qualitative research. Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research, Retrieved from www.scopus.com Di Martino, P. (2019). The complex relationship between mathematical modeling and attitude towards mathematics. Affect in Mathematical Modeling, , 219-234. Retrieved from www.scopus.com Di Martino, P., & Zan, R. (2001). Attitude toward mathematics: Some theoretical issues. Proceedings of the 25th PME Conference, 3, 351-358. Retrieved from www.scopus.com Doerr, H. M., Ärlebäck, J. B., & Costello Staniec, A. (2014). Design and effectiveness of modeling-based mathematics in a summer bridge program. Journal of Engineering Education, 103(1), 92-114. doi:10.1002/jee.20037 Doruk, B. K. (2012). Mathematical modeling activities as a useful tool for values education. Kuram Ve Uygulamada Egitim Bilimleri, 12(2), 1667-1672. Retrieved from www.scopus.com English, L. (2003). Mathematical modelling with young learners. Mathematical modelling: A way of life - ICTMA 11 (pp. 3-17) Retrieved from www.scopus.com Ferri, R. B. (2014). Mathematical modeling—the teacher’s responsibility. Proceedings from the Teachers College Mathematical Modeling Oktoberfest, Retrieved from www.scopus.com Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(FEBRUARY), 39-50. Retrieved from www.scopus.com Galbraith, P. (2017). Forty years on: Mathematical modelling in and for education. 40 Years on: We are Still Learning! Proceedings of the 40Th Annual Conference of the Mathematics Education Research Group of Australasia, , 47-50. Retrieved from www.scopus.com Goretzko, D., Pham, T. T. H., & Bühner, M. (2021). Exploratory factor analysis: Current use, methodological developments and recommendations for good practice. Current Psychology, 40(7), 3510-3521. doi:10.1007/s12144-019-00300-2 Hair, J. F., Anderson, R. E., Tatham, R. L., & Black, W. C. (1995). Multivariate Data Analysis, Retrieved from www.scopus.com Hair, J. F., Celsi, M. W., Money, A. H., Samouel, P., & Page, M. J. (2011). Essentials of business research methods. Essentials of Business Research Methods, Retrieved from www.scopus.com Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2013). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), Retrieved from www.scopus.com Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2013). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), Retrieved from www.scopus.com Hallström, J., & Schönborn, K. J. (2019). Models and modelling for authentic STEM education: Reinforcing the argument. International Journal of STEM Education, 6(1) doi:10.1186/s40594-019-0178-z Hame, S., Bahari, P., & Abdullah, A. G. K. (2008). Korelasi antara persekitaran pembelajaran matematik, sikap pelajar terhadap matematik, dan pencapaian pelajar dalam matematik: Satu kajian kes. ESTEEM, 4(2), 91-103. Retrieved from www.scopus.com Hannula, M. S. (2002). Attitude towards mathematics: Emotions, expectations and values. Educational Studies in Mathematics, 49(1), 25-46. doi:10.1023/A:1016048823497 Hannula, M. S., Di Martino, P., Pantziara, M., Zhang, Q., Morselli, F., Heyd-Metzuyanim, E., & Goldin, G. A. (2016). Attitudes, beliefs, motivation, and identity in mathematics education. Attitudes, Beliefs, Motivation and Identity in Mathematics Education, , 1-35. Retrieved from www.scopus.com He, J., Sun, S., & Fan, X. (2021). Validation of the 12-item short form of the eating disorder examination questionnaire in the chinese context: Confirmatory factor analysis and rasch analysis. Eating and Weight Disorders, 26(1), 201-209. doi:10.1007/s40519-019-00840-3 Hennig, C. (2010). Mathematical models and reality: A constructivist perspective. Foundations of Science, 15(1), 29-48. doi:10.1007/s10699-009-9167-x Hidayat, R., Qudratuddarsi, H., Mazlan, N. H., & Mohd Zeki, M. Z. (2021). Evaluation of a test measuring mathematical modelling competency for indonesian college students. Journal of Nusantara Studies, 6(2), 133-155. Retrieved from www.scopus.com Hidayat, R., Syed Zamri, S. N. A., & Zulnaidi, H. (2018). Exploratory and confirmatory factor analysis of achievement goals for indonesian students in mathematics education programmes. Eurasia Journal of Mathematics, Science and Technology Education, 14(12) doi:10.29333/ejmste/99173 Hidayat, R., Zamri, S. N. A. S., Zulnaidi, H., Abdullah, M. F. N. L., & Adnan, M. (2021). The interrelationships between metacognition and modeling competency: The moderating role of the academic year. European Journal of Educational Research, 10(4), 1853-1866. doi:10.12973/EU-JER.10.4.1853 Hidayat, R., Zulnaidi, H., & Zamri, S. N. A. S. (2018). Roles of metacognition and achievement goals in mathematical modeling competency: A structural equation modeling analysis. PLoS ONE, 13(11) doi:10.1371/journal.pone.0206211 Hooper, D., Coughlan, J., & Mullen, M. R. (2008). Structural equation modelling: Guidelines for determining model fit. Electronic Journal of Business Research Methods, 6(1), 53-60. Retrieved from www.scopus.com Hunt, J. (2007). Communicating big themes in applied mathematics. Mathematical Modeling (ICTMA12): Education, Engineering and Economics, , 2-24. Retrieved from www.scopus.com Iseppi, L., Rizzo, M., Gori, E., Nassivera, F., Bassi, I., & Scuderi, A. (2021). Rasch model for assessing propensity to entomophagy. Sustainability (Switzerland), 13(8) doi:10.3390/su13084346 Kasmin, F., Othman, Z., & Ahmad, S. S. S. (2019). Improving students' perception towards learning mathematics. EDUCATUM Journal of Science Mathematics and Technology, 6(1), 29-34. Retrieved from www.scopus.com Khairani, A. Z. (2016). Assessing urban and rural teachers' competencies in STEM integrated education in malaysia. Paper presented at the MATEC Web of Conferences, , 87 doi:10.1051/matecconf/20178704004 Retrieved from www.scopus.com Kline, R. B. (1998). Principles and practice of structural equation modeling. Principles and Practice of Structural Equation Modeling, Retrieved from www.scopus.com Kohen, Z., & Orenstein, D. (2021). Mathematical modeling of tech-related real-world problems for secondary school-level mathematics. Educational Studies in Mathematics, 107(1), 71-91. doi:10.1007/s10649-020-10020-1 Leavy, A., Hourigan, M., & Carroll, C. (2017). Exploring the impact of reform mathematics on entry-level pre-service primary teachers attitudes towards mathematics. International Journal of Science and Mathematics Education, 15(3), 509-526. doi:10.1007/s10763-015-9699-1 Lee, J., & Paek, I. (2014). In search of the optimal number of response categories in a rating scale. Journal of Psychoeducational Assessment, 32(7), 663-673. doi:10.1177/0734282914522200 Leong, K. E., & Tan, J. Y. (2020). Exploring secondary students' modelling competencies. Mathematics Enthusiast, 17(1), 84-107. Retrieved from www.scopus.com Leung, A. (2019). Exploring STEM pedagogy in the mathematics classroom: A tool-based experiment lesson on estimation. International Journal of Science and Mathematics Education, 17(7), 1339-1358. doi:10.1007/s10763-018-9924-9 Leung, S. -. (2011). A comparison of psychometric properties and normality in 4-, 5-, 6-, and 11-point likert scales. Journal of Social Service Research, 37(4), 412-421. doi:10.1080/01488376.2011.580697 Lozano, L. M., García-Cueto, E., & Muñiz, J. (2008). Effect of the number of response categories on the reliability and validity of rating scales. Methodology, 4(2), 73-79. doi:10.1027/1614-2241.4.2.73 Maaß, K. (2006). What are modelling competencies? ZDM - International Journal on Mathematics Education, 38(2), 113-142. doi:10.1007/BF02655885 Mardia, K. V. (1974). Applications of some measures of multivariate skewness and kurtosis in testing normality and robustness studies. Sankhya, 36, 115-128. Retrieved from www.scopus.com McLeod, D. B. (1992). Research on affect in mathematics education: A reconceptualization. Handbook of Research on Mathematics Teaching and Learning, , 575-596. Retrieved from www.scopus.com Obrad, C. (2020). Constraints and consequences of online teaching. Sustainability (Switzerland), 12(17) doi:10.3390/SU12176982 Olson, J. M., & Stone, J. (2005). The influence of behavior on attitudes. The Handbook of Attitudes, , 223-271. Retrieved from www.scopus.com Osborne, J. W. (2015). What is rotating in exploratory factor analysis? Practical Assessment, Research and Evaluation, 20(2), 1-7. Retrieved from www.scopus.com Pearl, J. (2012). The causal foundations of structural equation modeling. Handbook of Structural Equation Modeling, , 68-91. Retrieved from www.scopus.com Pollak, H. O. (2011). What is mathematical modeling? Journal of Mathematics Education at Teachers College, 2(1), 64. Retrieved from www.scopus.com Purnami, W., Ashadi, Suranto, Sarwanto, Sumintono, B., & Wahyu, Y. (2021). Investigation of person ability and item fit instruments of eco critical thinking skills in basic science concept materials for elementary pre-service teachers. Jurnal Pendidikan IPA Indonesia, 10(1), 127-137. doi:10.15294/jpii.v10i1.25239 Raykov, T. (2004). Behavioral scale reliability and measurement invariance evaluation using latent variable modeling. Behavior Therapy, 35(2), 299-331. doi:10.1016/S0005-7894(04)80041-8 Rouquette, A., Hardouin, J. -., Vanhaesebrouck, A., Sébille, V., & Coste, J. (2019). Differential item functioning (DIF) in composite health measurement scale: Recommendations for characterizing DIF with meaningful consequences within the rasch model framework. PLoS ONE, 14(4) doi:10.1371/journal.pone.0215073 Sabudin, G., & Halim, L. (2020). Kajian sistematik: Pendekatan pengajaran dan impak khazanah pengetahuan dalam pembelajaran sains. Jurnal Pendidikan Sains Dan Matematik Malaysia, 10(1), 21-38. Retrieved from www.scopus.com Sahin, S., Dogan, M. F., Erdem, Z. C., Gurbuz, R., & Temurtas, A. (2019). Prospective teachers’ criteria for evaluating mathematical modeling problems. International Journal of Research in Education and Science, 5(2), 730-743. Retrieved from www.scopus.com Scoulas, J. M., Aksu Dunya, B., & De Groote, S. L. (2021). Validating students' library experience survey using rasch model. Library and Information Science Research, 43(1) doi:10.1016/j.lisr.2021.101071 Shahbari, J. A., & Peled, I. (2015). RESOLVING COGNITIVE CONFLICT IN A REALISTIC SITUATION WITH MODELING CHARACTERISTICS: COPING WITH A CHANGING REFERENCE IN FRACTIONS. International Journal of Science and Mathematics Education, 13(4), 891-907. doi:10.1007/s10763-014-9509-1 Singer, F. M., & Moscovici, H. (2008). Teaching and learning cycles in a constructivist approach to instruction. Teaching and Teacher Education, 24(6), 1613-1634. doi:10.1016/j.tate.2007.12.002 Stillman, G. A., Kaiser, G., Blum, W., & Brown, J. P. (2013). Mathematical modelling: Connecting to teaching and research practices – the impact of globalisation doi:10.1007/978-94-007-6540-5_1 Retrieved from www.scopus.com Suryadi, B., Hayat, B., & Putra, M. D. K. (2021). The indonesian version of the life orientation test-revised (LOT-R): Psychometric properties based on the rasch model. Cogent Psychology, 8(1) doi:10.1080/23311908.2020.1869375 Tajudin, A., & Abdullah, N. (2018). Kesediaan guru sains sekolah rendah terhadap pelaksanaan pembelajaran abad ke-21 [the readiness of primary school science teachers towards the implementation of 21st century learning]. Jurnal Pendidikan Sains Dan Matematik Malaysia, 8(1), 82-97. Retrieved from www.scopus.com |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |