UPSI Digital Repository (UDRep)
Start | FAQ | About

QR Code Link :

Type :article
Subject :Q Science
ISSN :0126-6039
Main Author :Mazidatulakmam Miskam
Additional Authors :Maizatul Najwa Jajuli
Title :Vortex assisted liquid-liquid microextraction with back extraction of repaglinide, glibenclamide and glimepiride in water samples
Place of Production :Tanjung Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2021
Notes :Sains Malaysiana
Corporate Name :Universiti Pendidikan Sultan Idris
Web Link :Click to view web link
PDF Full Text :Login required to access this item.

Abstract : Universiti Pendidikan Sultan Idris
A new analytical method based on vortex-assisted liquid-liquid microextraction with back extraction (VALLME-BE) coupled with high performance liquid chromatography was developed for the simultaneous determination of antidiabetic drugs; repaglinide, glibenclamide, and glimepiride in water samples. Chromatographic separation was achieved using C18 column (250 ? 4.6 mm ? 5 �m) and methanol-phosphate buffer (pH3.7) in the ratio of 70:30 v/v as a mobile phase at a flow rate of 1 mLmin-1. VALLME-BE was performed using 200 ?L of n-octane dispersed into the aqueous sample (10 mL) with the aid of vortexing agitation. Then, the analytes were back-extracted from the organic solvent to 0.05 M NaOH (40 �L). Under these conditions, enrichment factor of 155-fold was achieved. The developed VALLME-BE method showed excellent linearity in the range of 30 to 1000 �gL-1 with limit of detection (LOD) of 0.41-1.66 �gL-1 and limit of quantification (LOQ) of 1.38-5.54. 41-1.66 �gL-1. VALLME-BE was applied for the determination of repaglinide, glibenclamide and glimepiride in water samples with the recoveries ranged from 83-109%. The relative standard deviation for inter-day and intra-day precision was less than 9.9%. ? 2021 Penerbit Universiti Kebangsaan Malaysia. All rights reserved.

References

Abou-Elwafa Abdallah, M., Nguyen, K. -., Ebele, A. J., Atia, N. N., Ali, H. R. H., & Harrad, S. (2019). A single run, rapid polarity switching method for determination of 30 pharmaceuticals and personal care products in waste water using Q-exactive orbitrap high resolution accurate mass spectrometry. Journal of Chromatography A, 1588, 68-76. doi:10.1016/j.chroma.2018.12.033

AbuRuz, S., Millership, J., & McElnay, J. (2003). Determination of metformin in plasma using a new ion pair solid phase extraction technique and ion pair liquid chromatography. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 798(2), 203-209. doi:10.1016/j.jchromb.2003.09.043

AbuRuz, S., Millership, J., & McElnay, J. (2005). The development and validation of liquid chromatography method for the simultaneous determination of metformin and glipizide, gliclazide, glibenclamide or glimperide in plasma. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 817(2), 277-286. doi:10.1016/j.jchromb.2004.12.018

Al-Odaini, N. A., Zakaria, M. P., Yaziz, M. I., & Surif, S. (2010). Multi-residue analytical method for human pharmaceuticals and synthetic hormones in river water and sewage effluents by solid-phase extraction and liquid chromatography-tandem mass spectrometry. Journal of Chromatography A, 1217(44), 6791-6806. doi:10.1016/j.chroma.2010.08.033

Alshishani, A., Makahleh, A., Yap, H. F., Gubartallah, E. A., Salhimi, S. M., & Saad, B. (2016). Ion-pair vortex assisted liquid-liquid microextraction with back extraction coupled with high performance liquid chromatography-UV for the determination of metformin in plasma. Talanta, 161, 398-404. doi:10.1016/j.talanta.2016.08.067

Bojarska, J., Fruziński, A., Sieroń, L., & Maniukiewicz, W. (2019). The first insight into the supramolecular structures of popular drug repaglinide: Focus on intermolecular interactions in antidiabetic agents. Journal of Molecular Structure, 1179, 411-420. doi:10.1016/j.molstruc.2018.10.051

Çabuk, H., & Köktürk, M. (2013). Low density solvent-based dispersive liquid-liquid microextraction for the determination of synthetic antioxidants in beverages by high-performance liquid chromatography. The Scientific World Journal, 2013 doi:10.1155/2013/414398

Chen, L., Xiu, R., Wang, H., Wang, L., Wu, G., Liang, J., & Han, X. (2019). Simultaneous quantification of ten oxysterols based on LC–MS/MS and its application in atherosclerosis human serum samples. Chromatographia, 82(2), 553-564. doi:10.1007/s10337-018-3654-6

El-Zaher, A. A., Elkady, E. F., Elwy, H. M., & Saleh, M. A. (2016). Simultaneous determination of metformin, glipizide, repaglinide, and glimepiride or metformin and pioglitazone by a validated lc method: Application in the presence of metformin impurity (1-cyanoguanidine). Journal of AOAC International, 99(4), 957-963. doi:10.5740/jaoacint.15-0291

Fachi, M. M., Cerqueira, L. B., Leonart, L. P., De Francisco, T. M. G., & Pontarolo, R. (2016). Simultaneous quantification of antidiabetic agents in human plasma by a UPLC-QToF-MS method. PLoS ONE, 11(12) doi:10.1371/journal.pone.0167107

Feng, T. -., Xu, X. -., Du, M., Tan, M. -., Qin, L., & Zhu, B. -. (2017). Simultaneous determination of glyoxal, methylglyoxal and diacetyl in beverages using vortex-assisted liquid-liquid microextraction coupled with HPLC-DAD. Analytical Methods, 9(16), 2445-2451. doi:10.1039/c7ay00180k

Forouhi, N. G., & Wareham, N. J. (2014). Epidemiology of diabetes. Medicine (United Kingdom), 42(12), 698-702. doi:10.1016/j.mpmed.2014.09.007

Grabic, R., Fick, J., Lindberg, R. H., Fedorova, G., & Tysklind, M. (2012). Multi-residue method for trace level determination of pharmaceuticals in environmental samples using liquid chromatography coupled to triple quadrupole mass spectrometry. Talanta, 100, 183-195. doi:10.1016/j.talanta.2012.08.032

Gros, M., Rodríguez-Mozaz, S., & Barceló, D. (2012). Fast and comprehensive multi-residue analysis of a broad range of human and veterinary pharmaceuticals and some of their metabolites in surface and treated waters by ultra-high-performance liquid chromatography coupled to quadrupole-linear ion trap tandem mass spectrometry. Journal of Chromatography A, 1248, 104-121. doi:10.1016/j.chroma.2012.05.084

Gumieniczek, A., & Berecka, A. (2016). Analytical tools for determination of new oral antidiabetic drugs, glitazones, gliptins, gliflozins and glinides, in bulk materials, pharmaceuticals and biological samples. Open Chemistry, 14(1), 215-242. doi:10.1515/chem-2016-0023

Ho, E. N. M., Yiu, K. C. H., Wan, T. S. M., Stewart, B. D., & Watkins, K. L. (2004). Detection of anti-diabetics in equine plasma and urine by liquid chromatography-tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 811(1 SPEC. ISS.), 65-73. doi:10.1016/j.jchromb.2004.03.070

Ibarra-Costilla, E., Cerda-Flores, R. M., Dávila-Rodríguez, M. I., Samayo-Reyes, A., Calzado-Flores, C., & Cortés-Gutiérrez, E. I. (2010). DNA damage evaluated by comet assay in mexican patients with type 2 diabetes mellitus. Acta Diabetologica, 47(SUPPL. 1), S111-S116. doi:10.1007/s00592-009-0149-9

Kasprzyk-Hordern, B., Dinsdale, R. M., & Guwy, A. J. (2007). Multi-residue method for the determination of basic/neutral pharmaceuticals and illicit drugs in surface water by solid-phase extraction and ultra performance liquid chromatography-positive electrospray ionisation tandem mass spectrometry. Journal of Chromatography A, 1161(1-2), 132-145. doi:10.1016/j.chroma.2007.05.074

Lian, Y., Qiu, X., & Yang, Y. (2014). Vortex-assisted liquid-liquid microextraction combined with HPLC for the simultaneous determination of five phthalate esters in liquor samples. Food Analytical Methods, 7(3), 636-644. doi:10.1007/s12161-013-9666-9

Loos, R., Carvalho, R., António, D. C., Comero, S., Locoro, G., Tavazzi, S., . . . Gawlik, B. M. (2013). EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents. Water Research, 47(17), 6475-6487. doi:10.1016/j.watres.2013.08.024

López-Serna, R., Pérez, S., Ginebreda, A., Petrović, M., & Barceló, D. (2010). Fully automated determination of 74 pharmaceuticals in environmental and waste waters by online solid phase extraction-liquid chromatography- electrospray-tandem mass spectrometry. Talanta, 83(2), 410-424. doi:10.1016/j.talanta.2010.09.046

Makahleh, A., Yap, H. F., & Saad, B. (2015). Vortex-assisted liquid-liquid-liquid microextraction (VALLLME) technique: A new microextraction approach for direct liquid chromatography and capillary electrophoresis analysis. Talanta, 143, 394-401. doi:10.1016/j.talanta.2015.05.011

Martín, J., Buchberger, W., Santos, J. L., Alonso, E., & Aparicio, I. (2012). High-performance liquid chromatography quadrupole time-of-flight mass spectrometry method for the analysis of antidiabetic drugs in aqueous environmental samples. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 895-896, 94-101. doi:10.1016/j.jchromb.2012.03.023

Mokhtar, S. U., Kulsing, C., Althakafy, J. T., Kotsos, A., Drummer, O. H., & Marriott, P. J. (2020). Simultaneous analysis of drugs in forensic cases by liquid Chromatography–High-resolution orbitrap mass spectrometry. Chromatographia, 83(1), 53-64. doi:10.1007/s10337-019-03814-w

Namieśnik, J., Spietelun, A., & Marcinkowski, Ł. (2015). Green sample preparation techniques for chromatographic determination of small organic compounds. Int.J.Chem.Eng.Appl., 6(3), 215-219. Retrieved from www.scopus.com

Nannou, C. I., Kosma, C. I., & Albanis, T. A. (2015). Occurrence of pharmaceuticals in surface waters: Analytical method development and environmental risk assessment. International Journal of Environmental Analytical Chemistry, 95(13), 1242-1262. doi:10.1080/03067319.2015.1085520

Omran, N. H., Wagdy, H. A., Abdel-Halim, M., & Nashar, R. M. E. (2019). Validation and application of molecularly imprinted polymers for SPE/UPLC–MS/MS detection of gemifloxacin mesylate. Chromatographia, 82(11), 1617-1631. doi:10.1007/s10337-019-03782-1

Pizarro, C., Pérez-Del-Notario, N., Sáenz-Mateo, A., & González-Sáiz, J. M. (2014). A simple and sensitive vortex assisted liquid-liquid microextraction method for the simultaneous determination of haloanisoles and halophenols in wines. Talanta, 128, 1-8. doi:10.1016/j.talanta.2014.04.005

Radke, M. (2010). Fate of pharmaceuticals in the environment and in water treatment systems. Toxicological & Environmental Chemistry, 92(1), 209. Retrieved from www.scopus.com

Selahle, S. K., & Nomngongo, P. N. (2020). Determination of fluoroquinolones in the environmental samples using vortex assisted dispersive liquid-liquid microextraction coupled with high performance liquid chromatography. International Journal of Environmental Analytical Chemistry, 100(3), 282-294. doi:10.1080/03067319.2019.1636042

Siddiqui, S. (2014). Depression in type 2 diabetes mellitus - A brief review. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 8(1), 62-65. doi:10.1016/j.dsx.2013.06.010

Yiantzi, E., Psillakis, E., Tyrovola, K., & Kalogerakis, N. (2010). Vortex-assisted liquid-liquid microextraction of octylphenol, nonylphenol and bisphenol-A. Talanta, 80(5), 2057-2062. doi:10.1016/j.talanta.2009.11.005


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries with this repository, kindly contact us at pustakasys@upsi.edu.my or Whatsapp +60163630263 (Office hours only)