UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :thesis
Subject :HD Industries. Land use. Labor
Main Author :Khatari, Maimuna Abdelfattah Ahmad
Title :Multi-criteria evaluation and benchmarking for Active Queue Management methods of network congestion control-2
Place of Production :Tanjong Malim
Publisher :Fakulti Seni, Komputeran dan Industri Kreatif
Year of Publication :2020
Notes :with CD
Corporate Name :Universiti Pendidikan Sultan Idris
PDF Guest :Click to view PDF file

Abstract : Universiti Pendidikan Sultan Idris
This research aimed to propose a benchmarking decision matrix for the Active Queue Management (AQM) methods of network congestion control based on multi-criteria analysis to aid the developers of AQM methods to make the right decision of selecting the best AQM method. In this study, an experiment was conducted on the basis of several stages. First, decision matrix was proposed for selecting suitable AQM methods based on multi criteria (performance, process overhead and configuration), with each criterion has several sub criteria (Throughput, Mean Queue Length, Drop Rate, Packet Loss, Delay, Time, Space, Estimated Calculation, Sensitivity). In addition, six AQM methods of alternatives were used. Subsequently, the ranking of the AQM methods was utilized by the developed decision matrix using Multi Criteria Decision Making (MCDM) techniques, namely, the Analytic Hierarchy Process (AHP) to weight the evaluation criteria, and the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) was used to benchmark and rank the AQM methods. TOPSIS has been applied in two decision-making contexts: individual and group decision making (GDM), as well as in GDM, internal and external group aggregation has applied where internal aggregation is receiving the higher ranked value of 62.50% for RED method, which is ranked first in GDM. Data consisting of three main criteria as the required criteria were collected by developing a Sub-Process that is responsible for implementing the AQM methods to generate the data that used in the constructed Decision Matrix. The research findings showed that the integration of Multi-Layer AHP and Group-TOPSIS was effective in solving the problems associated with the selection of AQM methods, as evidenced by the systematic ranking of six AQM methods. In conclusion, the internal and external aggregations of Group TOPSIS used in different contexts were able to generate the results of AQM method ranking that were similar. The implication of the study is that the AQM developers could use such a novel technique to make the right decision of selecting the best AQM method to prevent the router congestion and improve the performance of the computer networks as a whole

References

Abbasov, B., & Korukoglu, S. (2009). Effective RED: An algorithm to improve RED's performance by reducing packet loss rate. Journal of Network and Computer Applications, 32(3), 703-709. doi: http://dx.doi.org/10.1016/j.jnca.2008.07.001 

Abdel-jaber, H., Ababneh, J., Thabtah, F., Daoud, A. M., & Baklizi, M. (2011). Performance Analysis of the Proposed Adaptive Gentle Random Early Detection Method under NonCongestion and Congestion Situations Digital Enterprise and Information Systems (pp. 592-603): Springer. 

Abdel-Jaber, H., Mahafzah, M., Thabtah, F., & Woodward, M. (2008, 16-18 June 2008). Fuzzy logic controller of Random Early Detection based on average queue length and packet loss rate. Paper presented at the Performance Evaluation of Computer and Telecommunication Systems, 2008. SPECTS 2008. International Symposium on,IEEE. 

Abdel-Jaber, H., Thabtah, F., Woodward, M., Jaffar, A., & Al Bazar, H. (2014). Random Early Dynamic Detection Approach for Congestion Control. Baltic Journal of Modern Computing, 2(1), 16. 

Abdullateef, B. N., Elias, N. F., Mohamed, H., Zaidan, A., & Zaidan, B. (2016). An evaluation and selection problems of OSS-LMS packages. SpringerPlus, 5(1), 248.  

Abualhaj, M. M., Abu-Shareha, A. A., & Al-Tahrawi, M. M. (2018). FLRED: an efficient fuzzy logic based network congestion control method. Neural Computing and Applications. doi: 10.1007/s00521-016-2730-9 

Adams, R. (2012). Active Queue Management: A Survey. IEEE Communications Surveys & Tutorials, 15(3), 1425-1476. doi: doi: 10.1109/SURV.2012.082212.00018 

Ahammed, G. F., & Banu, R. (2010). Anakyzing the performance of Active Queue Management Algorithms. International Journal of Computer Networks and Communications, 2(2).  

Ahmadi, H., Nilashi, M., & Ibrahim, O. (2015). Organizational decision to adopt hospital information system: An empirical investigation in the case of Malaysian public hospitals. International journal of medical informatics, 84(3), 166-188.  

AL-DIABAT, M., ABDEL-JABER, H., THABTAH, F., ABOU-RABIA, O., & KISHTA, M. (2012). Analytical models based discrete-time queueing for the congested network. International Journal of Modeling, Simulation, and Scientific Computing, 3(01), 1150004.  

Albahri, A., Zaidan, A., Albahri, O., Zaidan, B., & Alsalem, M. (2018). Real-Time Fault-Tolerant mHealth System: Comprehensive Review of Healthcare Services, Opens Issues, Challenges and Methodological Aspects. Journal of medical systems, 42(8), 137.  

Albahri, A. S., Albahri, O. S., Zaidan, A. A., Zaidan, B. B., Hashim, M., Alsalem, M. A., . . . Baqer, M. J. (2019). Based Multiple Heterogeneous Wearable Sensors: A Smart Real-Time Health Monitoring Structured for Hospitals Distributor. IEEE Access, 7, 37269-37323. doi: 10.1109/ACCESS.2019.2898214 

Albahri, O., Zaidan, A., Zaidan, B., Hashim, M., Albahri, A., & Alsalem, M. (2018). Real-time remote health-monitoring Systems in a Medical Centre: A review of the provision of healthcare services-based body sensor information, open challenges and methodological aspects. Journal of medical systems, 42(9), 164.  

Alfa, A. S. (2010). Queueing theory for telecommunications: discrete time modelling of a single node system. Springer Science & Business Media. 

Ali, A. G., Woodward, M., & Etbega, M. (2007). Two Different Approaches of Active Queue Management. Paper presented at the 2007 IEEE International Conference on Networking, Sensing and Control. 

Almahdi, E. M. (2019). Based Mobile Patient Monitoring Systems: A prioritization Framework using Multi-Criteria Decision Making Techniques. Journal of medical systems.  

Almahdi, E. M., Zaidan, A. A., Zaidan, B. B., Alsalem, M. A., Albahri, O. S., & Albahri, A. S. (2019). Mobile patient monitoring systems from a benchmarking aspect: Challenges, open issues and recommended solutions. Journal of medical systems, 43(7), 207. 

Alsalem, M., Zaidan, A., Zaidan, B., Hashim, M., Albahri, O., Albahri, A., . . . Mohammed, K. (2018). Systematic review of an automated multiclass detection and classification system for acute Leukaemia in terms of evaluation and benchmarking, open challenges, issues and methodological aspects. Journal of medical systems, 42(11), 204.  

Asalem, M. A., Zaidan, A. A., Zaidan, B. B., Albahri, O. S., Alamoodi, A. H., Albahri, A. S., ... & Mohammed, K. I. (2019). Multiclass benchmarking framework for automated acute Leukaemia detection and classification based on BWM and group-VIKOR. Journal of medical systems, 43(7), 212. 

AlSattar, H., Zaidan, A., Zaidan, B., Bakar, M. A., Mohammed, R., Albahri, O., . . . Albahri, A. (2018). MOGSABAT: a metaheuristic hybrid algorithm for solving multi-objective optimisation problems. Neural Computing and Applications, 1-15.  

Alshimaa, I., Ayman, E.-S., Zeiad, E., & Z, M. I. (2014). Enhanced Random Early Detection (ENRED). International Journal of Computer Applications, 92.  

Ar, I. M., & Kurtaran, A. (2013). Evaluating the relative efficiency of commercial banks in Turkey: An integrated AHP/DEA approach. International Business Research, 6(4), 129.  

Aruldoss, M., Lakshmi, T. M., & Venkatesan, V. P. (2013). A survey on multi criteria decision making methods and its applications. American Journal of Information Systems, 1(1), 31-43.  

Athuraliya, S., Low, S. H., Li, V. H., & Yin, Q. (2001). REM: active queue management. IEEE network, 15(3), 48-53.  

Attiya, G., & El-Khobby, H. (2012). Improving Internet Quality of Service through Active Queue Management in Routers. IJCSI International Journal of Computer Science Issues, 9(1).  

Aweya, J., Ouellette, M., & Montuno, D. Y. (2001). A control theoretic approach to active queue management. Comput. Netw., 36(2-3), 203-235. doi: 10.1016/s1389-1286(00)00206-1 

Baklizi, M., Abdel-Jaber, H., Abu-Alhaj, M. M., Abdullah, N., Ramadass, S., & Almomani, A. (2013). Dynamic stochastic early discovery: a new congestion control technique to improve networks performance. International Journal of Innovative Computing, Information and Control, 9(3), 1118-1126. 

Baklizi, M., Abdel-Jaber, H., Abu-Shareha, A. A., Abualhaj, M. M., & Ramadass, S. (2014). Fuzzy logic controller of gentle random early detection based on average queue length and delay rate. International Journal of Fuzzy Systems, 16(1), 9-19. 

Baklizi, M., Abdel-jaber, H., Ramadass, S., Abdullah, N., & Anbar, M. (2012). Performance assessment of AGRED, RED and GRED congestion control algorithms. Information Technology Journal, 11(2), 255.  

Baltussen, R., & Niessen, L. (2006). Priority setting of health interventions: the need for multi-criteria decision analysis. Cost effectiveness and resource allocation, 4(1), 1.  

Briscoe, B. (2015). Insights from Curvy RED (Random Early Detection): Technical report TR-TUB8-2015-003, BT. 

Changbiao, X., & Fengfeng, L. (2008). A Congestion Control Algorithm of Fuzzy Control in Routers. Paper presented at the International Conference on Wireless Communications, Networking and Mobile Computing.  

Chebli, S., El Akkary, A., Sefiani, N., & Elalami, N. (2016). PI Stabilization for Congestion Control of AQM Routers with Tuning Parameter Optimization. International Journal of Interactive Multimedia and Artificial Inteligence, 4(Special Issue on Artificial Intelligence Underpinning).  

Chen, C.-K., Liao, T.-L., & Yan, J.-J. (2009). Active queue management controller design for TCP communication networks: variable structure control approach. Chaos, Solitons & Fractals, 40(1), 277-285.  

Chen, J., Hu, C., & Ji, Z. (2010). Self-tuning random early detection algorithm to improve performance of network transmission. Mathematical Problems in Engineering, 2011.  

Chen, W., Li, Y., & Yang, S.-H. (2007). An average queue weight parameterization in a network supporting TCP flows with RED. Paper presented at the 2007 IEEE International Conference on Networking, Sensing and Control. 

Chen, W., & Yang, S.-H. (2009). The mechanism of adapting RED parameters to TCP traffic. Computer Communications, 32(13), 1525-1530.  

Chitra, K., & Padamavathi, D. G. (2010). Adaptive CHOKe: An algorithm to increase the fairness in Internet Routers Int. J. Advanced Networking and Applications, 01(06), 382-386  

Chrysostomou, C., Pitsillides, A., Hadjipollas, G., Sekercioglu, A., & Polycarpou, M. (2003). Fuzzy explicit marking for congestion control in differentiated services networks. Paper presented at the Computers and Communication, 2003.(ISCC 2003). Proceedings. Eighth IEEE International Symposium on. 

Chydzinski, A., & Chrost, L. (2011). Analysis of AQM queues with queue size based packet dropping. International Journal of Applied Mathematics and Computer Science, 21(3), 567-577.  

Claudio, D., Kremer, G. E. O., Bravo-Llerena, W., & Freivalds, A. (2014). A dynamic multi-attribute utility theory–based decision support system for patient prioritization in the emergency department. IIE Transactions on Healthcare Systems Engineering, 4(1), 1-15.  

Da-gang, G. (2010). A new adaptive BLUE algorithm. Paper presented at the Electrical and Control Engineering (ICECE), 2010 International Conference on. 

Dong, Y., Zha, Q., Zhang, H., Kou, G., Fujita, H., Chiclana, F., & Herrera-Viedma, E. (2018). Consensus reaching in social network group decision making: Research paradigms and challenges. Knowledge-Based Systems, 162, 3-13.  

Enaizan, O., Zaidan, A., Alwi, N. M., Zaidan, B., Alsalem, M., Albahri, O., & Albahri, A. (2018). Electronic medical record systems: Decision support examination framework for individual, security and privacy concerns using multi-perspective analysis. Health and Technology, 1-28.  

Etbega, M. H., Woodward, M., Abdel-Jaber, H., & Ali, A. G. (2004). A new version of adaptive red with reduced dependency on parameterisation: Citeseer. 

Fakharian, A., & Abbasi, A. (2015). Design of Congestion Controller for TCP Networks Based on LMI Formulation. Journal of Optimization in Industrial Engineering, 8(17), 51-56.  

Feng, W.-c., D., K. D., D., S., & G., S. K. (2001). Stochastic fair blue: a queue management algorithm for enforcing fairness. Paper presented at the INFOCOM 2001. Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE. 

Feng, W.-c., G., S. K., D., K. D., & D., S. (2002). The BLUE active queue management algorithms. Networking, IEEE/ACM Transactions on, 10(4), 513-528. doi: 10.1109/tnet.2002.801399 

Floyd, S. (2000). Recommendations On Using the Gentle Variant of RED. http://www.aciri.org/floyd/red/gentle.html.   

Floyd, S., Gummadi, R., & Shenker, S. (2001a). Adaptive RED: An Algorithm for Increasing the Robustness of RED's Active Queue Management. AT&T Center for Internet Research at ICSI.  

Floyd, S., & Jacobson, V. (1993). Random early detection gateways for congestion avoidance. IEEE/ACM Trans. Netw., 1(4), 397-413. doi: 10.1109/90.251892 

Govindan, K., & Jepsen, M. B. (2016). ELECTRE: A comprehensive literature review on methodologies and applications. European Journal of Operational Research, 250(1), 1-29. 

Hadjadj-Aoul, Y. (2009). Towards AQM Cooperation for Congestion Avoidance in DiffServ/MPLS Networks. Recent Patents on Computer Science, 2(1), 1-13.  

Hamdi, M. M., Rashid, S. A., Ismail, M., Altahrawi, M. A., Mansor, M. F., & AbuFoul, M. K. (2018, November). Performance Evaluation of Active Queue Management Algorithms in Large Network. In 2018 IEEE 4th International Symposium on Telecommunication Technologies (ISTT) (pp. 1-6). IEEE.  

Henderson, W., Pearce, C., Taylor, P. G., & van Dijk, N. M. (1990). Closed queueing networks with batch services. Queueing Systems, 6(1), 59-70.  

Hollot, C. V., Misra, V., Towsley, D., & Gong, W. B. (2001). On designing improved controllers for AQM routers supporting TCP flows. Paper presented at the 

Hong, J., Joo, C., & Bahk, S. (2007). Active queue management algorithm considering queue and load states. Computer Communications, 30(4), 886-892.  

INFOCOM 2001. Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE. 

Ingoley, S. N., & Nashipudi, M. (2012). A Review: Fuzzy Logic in Congestion Control of Computer Network Paper presented at the International Conference in Recent Trends in Information Technology and Computer Science  

Joshi, M., Mansata, A., Talauliker, S., & Beard, C. (2005). Design and analysis of multi-level active queue management mechanisms for emergency traffic. Computer Communications, 28(2), 162-173.  

Jumaah, F., Zadain, A., Zaidan, B., Hamzah, A., & Bahbibi, R. (2018). Decision-Making Solution based Multi-Measurement Design Parameter for Optimization of GPS Receiver Tracking Channels in Static and Dynamic Real-Time Positioning Multipath Environment. Measurement.  

Jumaah, F., Zaidan, A., Zaidan, B., Bahbibi, R., Qahtan, M., & Sali, A. (2018). Technique for order performance by similarity to ideal solution for solving complex situations in multi-criteria optimization of the tracking channels of GPS baseband telecommunication receivers. Telecommunication Systems, 1-19.  

Kalid, N., Zaidan, A., Zaidan, B., Salman, O. H., Hashim, M., Albahri, O., & Albahri, A. (2018). Based on Real Time Remote Health Monitoring Systems: A New Approach for Prioritization “Large Scales Data” Patients with Chronic Heart Diseases Using Body Sensors and Communication Technology. Journal of medical systems, 42(4), 69.  

Kalid, N., Zaidan, A., Zaidan, B., Salman, O. H., Hashim, M., & Muzammil, H. (2018). Based Real Time Remote Health Monitoring Systems: A Review on Patients Prioritization and Related" Big Data" Using Body Sensors information and Communication Technology. Journal of medical systems, 42(2), 30.  

Kapadia, A. C., & Feng, W.-c. (2004). GREEN: a TCP equation-based approach to active queue management.  

Klir, G. J. (1995). Fuzzy logic. Potentials, IEEE, 14(4), 10-15. doi: 10.1109/45.468220 

Koo, J., Ahn, S., & Chung, J. (2004). A comparative study of queue, delay, and loss characteristics of AQM schemes in QoS-enabled networks. Computing and Informatics, 23(4), 317-335.  

Kou, G., Ergu, D., Lin, C., & Chen, Y. (2016). Pairwise comparison matrix in multiple criteria decision making. Technological and Economic Development of Economy, 22(5), 738-765.  

Kunniyur, S., & Srikant, R. (2003). End-to-end congestion control schemes: Utility functions, random losses and ECN marks. Networking, IEEE/ACM Transactions on, 11(5), 689-702.  

Kunniyur, S. S., & Srikant, R. (2004). An adaptive virtual queue (AVQ) algorithm for active queue management. IEEE/ACM Transactions on Networking (ToN), 12(2), 286-299.  

Kushwaha, V., & Ratneshwer. (2016). Ranking of source-based congestion control approaches for high speed networks using AHP. International Journal of Communication Networks and Distributed Systems, 17(4), 387-411. 

Lam, K., & Zhao, X. (1998). An application of quality function deployment to improve the quality of teaching. International Journal of Quality & Reliability Management, 15(4), 389-413.  

Lapsley, D., & Low, S. (1999, 28 Sept.-1 Oct. 1999). Random early marking: an optimisation approach to Internet congestion control. Paper presented at the Networks, 1999. (ICON '99) Proceedings. IEEE International Conference on. 

Lee, K. M., Yang, J. H., & Suh, B. S. (2008). Congestion Control of Active Queue Management Routers Based on LQ-Servo Control. Engineering Letters, 16(3), 332-338.  

Li, G., Kou, G., & Peng, Y. (2016). A group decision making model for integrating heterogeneous information. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 48(6), 982-992.  

Li, J.-S., & Su, Y.-S. (2006). Random early detection with flow number estimation and queue length feedback control. Journal of Systems Architecture, 52(6), 359-372.  

Lim, L. B., Guan, L., Grigg, A., Phillips, I. W., Wang, X. G., & Awan, I. U. (2011). Controlling mean queuing delay under multi-class bursty and correlated traffic. Journal of Computer and System Sciences, 77(5), 898-916. doi: http://dx.doi.org/10.1016/j.jcss.2010.08.007 

Liu, S., Basar, T., & Srikant, R. (2008). TCP-Illinois: A loss-and delay-based congestion control algorithm for high-speed networks. Performance Evaluation, 65(6), 417-440.  

Long, C., Zhao, B., Guan, X., & Yang, J. (2005). The Yellow active queue management algorithm. Computer Networks, 47(4), 525-550.  

Loukas, R., Kohler, S., Andreas, P., & Tran-Gia, P. (2000, 2000). Fuzzy RED: congestion control for TCP/IP Diff-Serv. Paper presented at the Electrotechnical Conference, 2000. MELECON 2000. 10th Mediterranean. 

Malczewski, J. (1999). GIS and multicriteria decision analysis: John Wiley & Sons. 

Marin, A., Rossi, S., Bujari, A., & Palazzi, C. (2016). Performance evaluation of AQM techniques with heterogeneous traffic. Paper presented at the 2016 13th IEEE Annual Consumer Communications & Networking Conference (CCNC). 

Masoumzadeh, S. S., Taghizadeh, G., Meshgi, K., & Shiry, S. (2009). Deep Blue: A Fuzzy Q-Learning Enhanced Active Queue Management Scheme. Paper presented at the International Conference on Adaptive and Intelligent Systems (ICAIS'09).  

Moghaddam, M. H. Y. (2010). A fuzzy Active Queue Management mechanism for Internet congestion control. Paper presented at the Advanced Computational Intelligence (IWACI), 2010 Third International Workshop on. 

Mohammadi, S., Pour, H. M., Jafari, M., & Javadi, A. (2010). Fuzzy-based PID active queue manager for TCP/IP networks. Paper presented at the International Conference on Information Sciences Signal Processing and their Applications (ISSPA).  

Montgomery, D. C. (2017). Design and analysis of experiments: John Wiley & Sons. doi:http://bcs.wiley.com/he-bcs/Books?action=resource&bcsId=4613&itemId=0470398825&resourceId=14570 

Morente-Molinera, J., Kou, G., Samuylov, K., Ureña, R., & Herrera-Viedma, E. (2019). Carrying out consensual Group Decision Making processes under social networks using sentiment analysis over comparative expressions. Knowledge-Based Systems, 165, 335-345.  

Morente-Molinera, J. A., Kou, G., Peng, Y., Torres-Albero, C., & Herrera-Viedma, E. (2018). Analysing discussions in social networks using group decision making methods and sentiment analysis. Information Sciences, 447, 157-168.  

Nakhaeizadeh, G., & Schnabl, A. (1997). Development of Multi-Criteria Metrics for Evaluation of Data Mining Algorithms. Paper presented at the KDD. 

Nyirenda, C. N., & Dawoud, D. S. (2006). Multi-objective particle swarm optimization for fuzzy logic based active queue management. Paper presented at the International Conference on Fuzzy Systems.  

Oliveira, M., Fontes, D. B., & Pereira, T. (2013). Multicriteria decision making: a case study in the automobile industry. Annals of Management Science, 3(1), 109.  

Ott, T. J., Lakshman, T. V., & Wong, L. (1999, 21-25 Mar 1999). SRED: stabilized RED. Paper presented at the INFOCOM '99. Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE. 

Patel, S., & Bhatnagar, S. (2016). Adaptive Mean Queue Size and Its Rate of Change: Queue Management with Random Dropping. arXiv preprint arXiv:1602.02241.  

Petrovic-Lazarevic, S., & Abraham, A. (2004). Hybrid fuzzy-linear programming approach for multi criteria decision making problems. arXiv preprint cs/0405019.  

Qader, M., Zaidan, B., Zaidan, A., Ali, S., Kamaluddin, M., & Radzi, W. (2017). A methodology for football players selection problem based on multi-measurements criteria analysis. Measurement, 111, 38-50.  

Rahmatullah, B., Zaidan, A., Mohamed, F., & Sali, A. (2017). Multi-complex attributes analysis for optimum GPS baseband receiver tracking channels selection. Paper presented at the Control, Decision and Information Technologies (CoDIT), 2017 4th International Conference on. 

Rossides, L., Sekercioglu, A., Pitsillides, A., Vasilakos, A., Kohler, S., & Tran-Gia, P. (2002). Fuzzy RED: Congestion control for TCP/IP diff-serv Advances in Computational Intelligence and Learning (pp. 343-352): Springer. 

Ruby, A. J., Aisha, B. W., & Subash, C. P. (2016). Comparison of multi criteria decision making algorithms for ranking cloud renderfarm services. arXiv preprint arXiv:1611.10204. 

Ryu, S., Rump, C., & Qiao, C. (2003). Advances in internet congestion control. IEEE Communications Surveys & Tutorials, 5(1), 28-39.  

Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of mathematical psychology, 15(3), 234-281.  

Saaty, T. L. (1980). The analytic hierarchical process. McGrow-Hill. Newyork.  

Salih, M. M., Zaidan, B., Zaidan, A., & Ahmed, M. A. (2018). Survey on Fuzzy TOPSIS State-of-the-Art between 2007–2017. Computers & Operations Research.  

Salman, O., Zaidan, A., Zaidan, B., Naserkalid, & Hashim, M. (2017). Novel methodology for triage and prioritizing using “big data” patients with chronic heart diseases through telemedicine environmental. International Journal of Information Technology & Decision Making, 16(05), 1211-1245.  

Seifaddini, O., Abdullah, A., & Vosough, a. H. (2013). RED, GRED, AGRED CONGESTION CONTROL ALGORITHMS IN HETEROGENEOUS TRAFFIC TYPES. Paper presented at the International Conference on Computing and Informatics.  

Sharma, A. K., & Behra, A. K. (2016). A Survey on Active Queue Management Techniques. Int. J. Eng. Comput. Sci. 

Shih, H.-S., Shyur, H.-J., & Lee, E. S. (2007). An extension of TOPSIS for group decision making. Mathematical and Computer Modelling, 45(7), 801-813.  

Shirbhate, A. (2013). Design of Congestion Controller for TCP Networks Based on LMI Formulation. Global Journal of Computer Science and Technology.  

Silva, G. J., Datta, A., & Bhattacharyya, S. P. (2001). PI stabilization of first-order systems with time delay. Automatica, 37(12), 2025-2031.  

Stanojevic, R., Shorten, R. N., & Kellett, C. M. (2006). Adaptive tuning of drop-tail buffers for reducing queueing delays. IEEE Communications Letters, 10(7), 570-572.  

Sun, J., & Zukerman, M. (2007). RaQ: A robust active queue management scheme based on rate and queue length. Computer Communications, 30(8), 1731-1741.  

Sun, J., Zukerman, M., & Palaniswami, M. (2007). Stabilizing RED using a fuzzy controller. Paper presented at the International Conference on Communications (ICC'07).  

Suthaharan, S. (2007). Reduction of queue oscillation in the next generation Internet routers. Computer Communications, 30(18), 3881-3891.  

Tamea, G., Biagi, M., & Cusani, R. (2011). Soft multi-criteria decision algorithm for vertical handover in heterogeneous networks. IEEE Communications Letters, 15(11), 1215-1217.  

Tsavlidis, L., Efraimidis, P., & Koutsiamanis, R.-A. (2016). Prince: an effective router mechanism for networks with selfish flows. Journal of Internet Engineering, 6(1).  

Tzeng, G. H., & Huang, J. J. (2011). Multiple attribute decision making: methods and applications. Chapman and Hall/CRC.  

Wang, B., Kasthurirangan, B., & Xu, J. (2005). Subsidized RED: an active queue management mechanism for short-lived flows. Computer Communications, 28(5), 540-549.  

Wang, H., Tian, Z., & Zhang, Q. (2010). Self-tuning price-based congestion control supporting TCP networks. Paper presented at the Computer Communications and Networks (ICCCN), 2010 Proceedings of 19th International Conference on. 

Wang, P., Chen, H., Yang, X., & Lu, X. (2011). Active queue management of delay network based on constrained model predictive control. Paper presented at the 2011 Chinese Control and Decision Conference (CCDC). 

Wind, Y., & Saaty, T. L. (1980). Marketing applications of the analytic hierarchy process. Management science, 26(7), 641-658.  

Woodward, M. E. (1994). Communication and Computer Networks: Modelling with discrete-time queues: Wiley-IEEE Computer Society Press. 

Xiong, N., Vasilakos, A. V., Yang, L. T., Wang, C. X., Kannan, R., Chang, C. C., & Pan, Y. (2010). A novel self-tuning feedback controller for active queue management supporting TCP flows. Information Sciences, 180(11), 2249-2263. 

Xu, C., & Li, F. (2008, October). A Congestion control algorithm of fuzzy control in routers. In 2008 4th International Conference on Wireless Communications, Networking and Mobile Computing (pp. 1-4). IEEE. 

Yaghmaee, M. H., Menhaj, M., & Amintoosi, H. (2005). A fuzzy extension to the blue active queue management algorithm. IAEEE, Journal of Iranian Association of Electrical and Electronics Engineers, 1(3), 3-14.  

Yamaguchi, T., & Takahashi, Y. (2007). A queue management algorithm for fair bandwidth allocation. Computer Communications, 30(9), 2048-2059.  

Yas, Q. M., Zadain, A., Zaidan, B., Lakulu, M., & Rahmatullah, B. (2017). Towards on develop a framework for the evaluation and benchmarking of skin detectors based on artificial intelligent models using multi-criteria decision-making techniques. International Journal of Pattern Recognition and Artificial Intelligence, 31(03), 1759002.  

Yas, Q. M., Zaidan, A., Zaidan, B., Rahmatullah, B., & Karim, H. A. (2018). Comprehensive insights into evaluation and benchmarking of real-time skin detectors: Review, open issues & challenges, and recommended solutions. Measurement, 114, 243-260.  

Yu-hong, Z., Xue-feng, Z., & Xu-yan, T. (2016). Research on the Improved Way of RED Algorithm S-RED. International Journal of u-and e-Service, Science and Technology, 9(2), 375-384.  

Zaidan, A., Zaidan, B., Al-Haiqi, A., Kiah, M. L. M., Hussain, M., & Abdulnabi, M. (2015). Evaluation and selection of open-source EMR software packages based on integrated AHP and TOPSIS. Journal of biomedical informatics, 53, 390-404.  

Zaidan, A., Zaidan, B., Albahri, O., Alsalem, M., Albahri, A., Yas, Q. M., & Hashim, M. (2018). A review on smartphone skin cancer diagnosis apps in evaluation and benchmarking: Coherent taxonomy, open issues and recommendation pathway solution. Health and Technology, 1-16.  

Zaidan, A., Zaidan, B., Hussain, M., Haiqi, A., Kiah, M. M., & Abdulnabi, M. (2015). Multi-criteria analysis for OS-EMR software selection problem: A comparative study. Decision support systems, 78, 15-27.  

Zaidan, A. A. (2019). Based Multi-Agent learning Neural Network and Bayesian for Real-Time IoT Skin Detectors: A new Evaluation and Benchmarking Methodology. Neural Computing and Applications.  

Zaidan, B., & Zaidan, A. (2017). Software and hardware FPGA-based digital watermarking and steganography approaches: Toward new methodology for evaluation and benchmarking using multi-criteria decision-making techniques. Journal of Circuits, Systems and Computers, 26(07), 1750116.  

Zaidan, B., & Zaidan, A. (2018). Comparative study on the evaluation and benchmarking information hiding approaches based multi-measurement analysis using TOPSIS method with different normalisation, separation and context techniques. Measurement, 117, 277-294.  

Zaidan, B., Zaidan, A., Abdul Karim, H., & Ahmad, N. (2017). A new approach based on multi-dimensional evaluation and benchmarking for data hiding techniques. International Journal of Information Technology & Decision Making, 1-42.  

Zaidan, B., Zaidan, A., Karim, H. A., & Ahmad, N. (2017). A new digital watermarking evaluation and benchmarking methodology using an external group of evaluators and multi-criteria analysis based on ‘large-scale data’. Software: Practice and Experience, 47(10), 1365-1392.  

Zargar, S. T., Yaghmaee, M. H., & Fard, A. M. (2006). Fuzzy proactive queue management technique. Paper presented at the Annual IEEE India Conference.  

ZHAN, Z.-q., Jie, Z., & Di, X. (2012). Stability analysis in an AVQ model of Internet congestion control algorithm. The Journal of China Universities of Posts and Telecommunications, 19(4), 22-28.  

Zhang, H., Kou, G., & Peng, Y. (2019). Soft consensus cost models for group decision making and economic interpretations. European Journal of Operational Research.  

Zhang, J., Xu, W., & Wang, L. (2011). An Improved Adaptive Active Queue Management Algorithm Based on Nonlinear Smoothing. Procedia Engineering, 15, 2369-2373.  

Zionts, S. (1979). MCDM-If not a Roman Numeral, then what? Interfaces, 9(4), 94-101.  


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.