UPSI Digital Repository (UDRep)
Start | FAQ | About

QR Code Link :

Type :thesis
Subject :RC Internal medicine
Main Author :Abdulbaqi, Azmi Shawkat
Title :Hybrid efficient compression method for electrocardiogram signal transmission based on discrete wavelet transform and principal component analysis
Place of Production :Tanjong Malim
Publisher :Fakulti Seni, Komputeran dan Industri Kreatif
Year of Publication :2020
Notes :with CD
Corporate Name :Universiti Pendidikan Sultan Idris
PDF Guest :Click to view PDF file
PDF Full Text :Login required to access this item.

Abstract : Universiti Pendidikan Sultan Idris
In this study, the researcher proposed a new approach for the compression of ECG signals by reducing the ECG data size for storage purposes which could speedily transmit data from the client to the server, preserve important diagnostic information from distortion within compressed signals, and maintain the quality of the reconstructed signal. This research was based on an experimental design involving two phases. In the first phase, DWT, which is a powerful compression tool, was used to compress ECG signals. In the compression process, PCA transferred the properties of compressed signals to MECG to maintain important cardiac features of a diagnostic area. In addition, this tool was used to reduce data dimensions to achieve optimal compression. In the second phase, the encryption of ECG signals during data transmission was performed to safeguard the privacy of patients. The findings showed that the performances of DWT and PCA algorithms were relatively superior that those of existing algorithms. Specifically, PCA was highly effective in the compression of multichannel ECG data. Likewise, DWT was also effective in the ECG signal compression involving QRS Regions and Non-QRS Regions. Moreover, it was found that ECG signals, including biomedical signals, could be represented in low bits per pixel with good quality. Revealingly, the findings showed that the proposed method managed to attain an average CR of 11.00 %, with PRD is less than 0.66 % and QS is equal to 29.71 %. Overall, these findings suggest that DWT and PCA algorithms can be effectively used for ECG signal monitoring and diagnostic applications.

References

Abdelmounim, E., Haddadi, R., Belaguid, A., & others. (2014). A new simple and efficient technique for ECG compression based on leads converter and DWT coefficients thresholding. In Complex Systems (WCCS), 2014 Second World Conference on (pp. 638–643). 

Abo-Zahhad, M., Ahmed, S. M., & Zakaria, A. (2011). ECG signal compression technique based on discrete wavelet transform and QRS-complex estimation. Signal Processing--An International Journal (SPIJ), 4(2), 138. 

Abo-Zahhad, M., Al-Ajlouni, A. F., Ahmed, S. M., & Schilling, R. J. (2013). A new algorithm for the compression of ECG signals based on mother wavelet parameterization and best-threshold levels selection. Digital Signal Processing, 23(3), 1002–1011. 

Abo-Zahhad, M. M., Mohamed, A. M., & Hussein, A. I. (2015). A hybrid ECG compression technique based on DWT and removal of interbeats and intrabeats correlations. In Computer Engineering & Systems (ICCES), 2015 Tenth International Conference on (pp. 416–421). 

Ahn, B.-G., Noh, Y.-H., & Jeong, D.-U. (2015). Implementation of the Variable ECG Data Packet Transmission System with Activity State. In Advanced Information Networking and Applications Workshops (WAINA), 2015 IEEE 29th International Conference on (pp. 6–10). 

Al-Busaidi, A. M., Khriji, L., Touati, F., Rasid, M. F. A., & Mnaouer, A. Ben. (2015). Real-time DWT-based compression for wearable Electrocardiogram monitoring system. In GCC Conference and Exhibition (GCCCE), 2015 IEEE 8th (pp. 1–6). 

Alam, S., & Gupta, R. (2014). A DPCM based electrocardiogram coder with thresholding for real time telemonitoring applications. In Communications and Signal Processing (ICCSP), 2014 International Conference on (pp. 176–180). 

Alesanco, A., & GarcÍa, J. (2008). Automatic real-time ECG coding methodology guaranteeing signal interpretation quality. IEEE Transactions on Biomedical Engineering, 55(11), 2519–2527. 

Allami, R., Stranieri, A., Balasubramanian, V., & Jelinek, H. F. (2016). ECG Reduction for Wearable Sensor. In Signal-Image Technology & Internet-Based Systems (SITIS), 2016 12th International Conference on (pp. 520–525). 

Almasi, A., Shamsollahi, M. B., & Senhadji, L. (2013). Bayesian denoising framework of phonocardiogram based on a new dynamical model. IRBM, 34(3), 214–225. 

Anoop, N. A., & Parani, T. K. (2016). A real time efficient & secure patient monitoring based on Wireless Body Area Networks. In Green Engineering and Technologies (IC-GET), 2016 Online International Conference on (pp. 1–5). 

Arvinti, B., & Costache, M. (2014). The performance of the Daubechies mother wavelets on ECG compression. In Electronics and Telecommunications (ISETC), 2014 11th International Symposium on (pp. 1–4). 

Attarmoghaddam, N., Khayat, S. H., & Maymandi-Nejad, M. (2016). FPGA implementation of power and area efficient compressed sensing for multi-channel ECG compression. In Electrical Engineering (ICEE), 2016 24th Iranian Conference on (pp. 1027–1032). 

Arican, M., & Polat, K. (2018). A novel fetal ECG signal compression method: Variance and neighboring based data compression. 2018 26th Signal Processing and Communications Applications Conference (SIU), 1–4. 

Baby, B., Manikandan, M. S., & Soman, K. P. (2011). Automated cardiac event change detection for continuous remote patient monitoring devices. In Proceedings of the 1st International Conference on Wireless Technologies for Humanitarian Relief (pp. 225–232). 

Bagchi, S. (2006). Telemedicine in rural India. PLoS Medicine, 3(3), e82. 

Bali, J. S., Nandi, A. V, & Hiremath, P. S. (2018). Performance Comparison of ANN Classifiers For Sleep Apnea Detection Based on ECG Signal Analysis Using Hilbert Transform. International Journal Of Computers & Technology, 17(2), 7312–7325. 

Bendifallah, A., Benzid, R., & Boulemden, M. (2011). Improved ECG compression method using discrete cosine transform. Electronics Letters, 47(2), 87–89. 

Benzid, R., Marir, F., & Bouguechal, N.-E. (2007). Electrocardiogram compression method based on the adaptive wavelet coefficients quantization combined to a modified two-role encoder. IEEE Signal Processing Letters, 14(6), 373–376. 

Benzid, R., Marir, F., Boussaad, A., Benyoucef, M., & Arar, D. (2003). Fixed percentage of wavelet coefficients to be zeroed for ECG compression. Electronics Letters, 39(11), 830–831. 

Bera, P., & Gupta, R. (2016a). Hybrid encoding algorithm for real time compressed electrocardiogram acquisition. Measurement, 91, 651–660. 

Bera, P., & Gupta, R. (2016b). Real-time compression of electrocardiogram using dynamic bit allocation strategy. In Control, Measurement and Instrumentation (CMI), 2016 IEEE First International Conference on (pp. 21–25). 

Bereksi-Reguig, F., & Slimane, Z. E. H. (2000). A powerful algorithm to aid cardiac arrhythmia diagnosis. Computer Methods in Biomechanics and Biomedical Engineering, 3(2), 119–127. 

Bhalerao, S., Ansari, I. A., Kumar, A., & Jain, D. K. (2019). A reversible and multipurpose ECG data hiding technique for telemedicine applications. Pattern Recognition Letters, 125, 463–473. 

Blanco-Velasco, M., Cruz-Roldan, F., Godino-Llorente, J. I., & Barner, K. E. (2007). Wavelet packets feasibility study for the design of an ECG compressor. IEEE Transactions on Biomedical Engineering, 54(4), 766–769. 

Blaya, J. A., Fraser, H. S. F., & Holt, B. (2010). E-health technologies show promise in developing countries. Health Affairs, 29(2), 244–251. 

Brás, S., & Pinho, A. J. (2015). ECG biometric identification: A compression based approach. In Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE (pp. 5838–5841). 

Candès, E. J., Li, X., Ma, Y., & Wright, J. (2011). Robust principal component analysis? Journal of the ACM (JACM), 58(3), 11. 

Castells, F., Laguna, P., S??rnmo, L., Bollmann, A., & Roig, J. M. (2007). Principal component analysis in ECG signal processing. Eurasip Journal on Advances in Signal Processing. https://doi.org/10.1155/2007/74580 

Cervigón, R. (2011). Biomedical applications of the discrete wavelet transform. In Discrete Wavelet Transforms-Biomedical Applications. InTech. 

Chen, S., Hua, W., Li, Z., Li, J., & Gao, X. (2017). Heartbeat classification using projected and dynamic features of ECG signal. Biomedical Signal Processing and Control, 31, 165–173. 

Chen, W.-S., Hsieh, L., & Yuan, S.-Y. (2004). High performance data compression method with pattern matching for biomedical ECG and arterial pulse waveforms. Computer Methods and Programs in Biomedicine, 74(1), 11–27. 

Chidean, M. I., Barquero-Pérez, Ó., Zhang, Q., Jacobsen, R. H., & Caamano, A. J. (2016). High diagnostic quality ECG compression and CS signal reconstruction in body sensor networks. In Acoustics, Speech and Signal Processing (ICASSP), 2016 IEEE International Conference on (pp. 6255–6259). 

Chouakri, S. A., Bereksi-Reguig, F., & Taleb-Ahmed, A. (2011). QRS complex detection based on multi wavelet packet decomposition. Applied Mathematics and Computation, 217(23), 9508–9525. 

Christov, I. I., Dotsinsky, I. A., & Daskalov, I. K. (1992). High-pass filtering of ECG signals using QRS elimination. Medical and Biological Engineering and Computing, 30(2), 253–256. 

Chu, C.-H., & Delp, E. J. (1989). Impulsive noise suppression and background normalization of electrocardiogram signals using morphological operators. IEEE Transactions on Biomedical Engineering, 36(2), 262–273. 

Cipresso, P., Serino, S., Villani, D., Repetto, C., Sellitti, L., Albani, G., ... & Riva, G. (2012). Is your phone so smart to affect your state? An exploratory study based on psychophysiological measures. Neurocomputing, 84, 23-30.  

Cohen, A., Poluta, M., & Scott-Millar, R. (1990). Compression of ECG signals using vector quantization. In Communications and Signal Processing, 1990. COMSIG 90. Proceedings., IEEE 1990 South African Symposium on (pp. 49–54). 

Craven, D., McGinley, B., Kilmartin, L., Glavin, M., & Jones, E. (2015). Compressed sensing for bioelectric signals: a review. IEEE Journal of Biomedical and Health Informatics, 19(2), 529–540. 

Craven, D., McGinley, B., Kilmartin, L., Glavin, M., & Jones, E. (2016). Energy-efficient Compressed Sensing for ambulatory ECG monitoring. Computers in Biology and Medicine, 71, 1–13. 

Craven, D., McGinley, B., Kilmartin, L., Glavin, M., & Jones, E. (2017). Adaptive dictionary reconstruction for compressed sensing of ecg signals. IEEE Journal of Biomedical and Health Informatics, 21(3), 645–654. 

Daubechies, I. (1992). Ten lectures on wavelets (Vol. 61). Siam. 

Debbal, S. M., & Bereksi-Reguig, F. (2008). Filtering and classification of phonocardiogram signals using wavelet transform. Journal of Medical Engineering & Technology, 32(1), 53–65. 

Deepu, C. J., & Lian, Y. (2015). A joint QRS detection and data compression scheme for wearable sensors. IEEE Transactions on Biomedical Engineering, 62(1), 165–175. 

Deepu, C. J., Zhang, X. Y., Heng, C. H., & Lian, Y. (n.d.). An ECG-on-Chip with QRS Detection & Lossless Compression for Low Power Wireless Sensors. Sensors, 2, 3. 

Demongeot, J., Hansen, O., Hamie, A., Franco, C., Sutton, B., & Cohen, É.-P. (2014). Dynalets: A new method for modelling and compressing biological signals. Applications to physiological and molecular signals. Comptes Rendus Biologies, 337(11), 609–624. 

Dhar, S., Mukhopadhyay, S. K., Mitra, S., Baig, M. M., & Mitra, M. (2014). Noise reduction and lossless ECG encoding. In Control, Instrumentation, Energy and Communication (CIEC), 2014 International Conference on (pp. 210–213). 

Ding, Y. S., & Zilic, Z. (2016). ECG compression for mobile sensor platforms. In Wearable and Implantable Body Sensor Networks (BSN), 2016 IEEE 13th International Conference on (pp. 99–104). 

Ebrahimzadeh, A., & Azarbad, M. (2010). ECG compression using wavelet transform and three-level quantization. In Digital Content, Multimedia Technology and its Applications (IDC), 2010 6th International Conference on (pp. 250–254). 

El Bcharri, O., Latif, R., Jenkal, W., & Abenaou, A. (2016). The ECG Signal Compression Using an Efficient Algorithm Based on the DWT. International Journal of Advanced Computer Science and Applications, 1(7), 181–187. 

Fang, W.-C., Huang, H.-C., & Tseng, S.-Y. (2013). Design of heart rate variability processor for portable 3-lead ECG monitoring system-on-chip. Expert Systems with Applications, 40(5), 1491–1504. 

Ferrara, E., & Widrow, B. (1981). The time-sequenced adaptive filter. IEEE Transactions on Acoustics, Speech, and Signal Processing, 29(3), 679–683. 

Fira, M., & Gora\cs, L. (2015). A new method for ECG compression evaluation. In Signals, Circuits and Systems (ISSCS), 2015 International Symposium on (pp. 1–4). 

Friedler, S. A., & Mount, D. M. (2015). A sensor-based framework for kinetic data compression. Computational Geometry, 48(3), 147–168. 

Gautam, R., & Sharmar, A. (2010). Detection of QRS complexes of ECG recording based on wavelet transform using Matlab. International Journal of Engineering Science and Technology, 2(7), 3038–3044. 

Gertsch, M. (2004). The ECG: a two-step approach to diagnosis. Springer Science & Business Media. 

Giurc\uaneanu, C. D., T\uabu\cs, I., & Mereu\ct\ua, \cSerban. (2002). Using contexts and R--R interval estimation in lossless ECG compression. Computer Methods and Programs in Biomedicine, 67(3), 177–186. 

GORA\cS, L., & FIRA, M. (n.d.). REVIEW OF RECENT RESULTS ON ECG COMPRESSION AND CLASSIFICATION. 

Goutsias, J., & Heijmans, H. J. A. M. (2000). Nonlinear multiresolution signal decomposition schemes. I. Morphological pyramids. IEEE Transactions on Image Processing, 9(11), 1862–1876. 

Grossi, G., Lanzarotti, R., & Lin, J. (2015). High-rate compression of ECG signals by an accuracy-driven sparsity model relying on natural basis. Digital Signal Processing, 45, 96–106. 

Gurve, D., Saini, B. S., & Saini, I. (2016). An improved lossless ECG data compression using ASCII character encoding. In Wireless Communications, Signal Processing and Networking (WiSPNET), International Conference on (pp. 758–764). 

Hameed, R. T., Salman, S. A., Mohamad, O. A., & \cT\uapu\cs, N. (2016). Efficient electrocardiogram data compression algorithm based on wavelet transform. In System Theory, Control and Computing (ICSTCC), 2016 20th International Conference on (pp. 710–714). 

Hargittai, S. (2008). Efficient and fast ECG baseline wander reduction without distortion of important clinical information. In Computers in Cardiology, 2008 (pp. 841–844). 

Hatim, A., Latif, R., El Bachari, O., & Arioua, M. (2016). Efficient electrocardiogram (ECG) lossy compression scheme. In Multimedia Computing and Systems (ICMCS), 2016 5th International Conference on (pp. 151–156). 

Hernandez, A. I., Mora, F., Villegas, M., Passariello, G., & Carrault, G. (2001). Real-time ECG transmission via Internet for nonclinical applications. IEEE Transactions on Information Technology in Biomedicine, 5(3), 253–257. 

Huang, B., Wang, Y., & Chen, J. (2013). ECG compression using the context modeling arithmetic coding with dynamic learning vector--scalar quantization. Biomedical Signal Processing and Control, 8(1), 59–65. 

Huang, H., Hu, S., & Sun, Y. (2018). ECG Signal Compression for Low-power Sensor Nodes Using Sparse Frequency Spectrum Features. 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS), 1–4. 

Huang, S., Li, J., Zhang, P., & Zhang, W. (2018). Detection of mental fatigue state with wearable ECG devices. International Journal of Medical Informatics, 119, 39–46. 

Ibaida, A., Al-Shammary, D., & Khalil, I. (2014). Cloud enabled fractal based ECG compression in wireless body sensor networks. Future Generation Computer Systems, 35, 91–101. 

Isa, S. M., Jatmiko, W., & Arymurthy, A. M. (2014). 3D SPIHT for multi-lead ECG compression. In Robotics and Automation (ICRA), 2014 IEEE International Conference on (pp. 488–493). 

Istepanian, R. S. H., Hadjileontiadis, L. J., & Panas, S. M. (2001). ECG data compression using wavelets and higher order statistics methods. IEEE Transactions on Information Technology in Biomedicine, 5(2), 108–115. 

Jain, P. K., & Tiwari, A. K. (2014). Heart monitoring systems-A review. Computers in Biology and Medicine, 54, 1–13. 

Jain, R. (n.d.). 12 Lead ECG Data Compression Using Principal Component Analysis. International Journal of Emerging Trends & Technology in Computer Science (IJETTCS) Volume, 4, 34–39. 

Jalaleddine, S. M. S., Hutchens, C. G., Strattan, R. D., & Coberly, W. A. (1990). ECG data compression techniques-a unified approach. IEEE Transactions on Biomedical Engineering, 37(4), 329–343. 

Jha, C. K., & Kolekar, M. H. (2015). Performance analysis of ECG data compression using wavelet based hybrid transform method. In Microwave, Optical and Communication Engineering (ICMOCE), 2015 International Conference on (pp. 138–141). 

Jha, C. K., & Kolekar, M. H. (2016). Efficient ECG data compression and transmission algorithm for telemedicine. In Communication Systems and Networks (COMSNETS), 2016 8th International Conference on (pp. 1–6). 

Jolliffe, I. T. (1986). Principal component analysis and factor analysis. In Principal component analysis (pp. 115–128). Springer. 

Kale, S. B., & Gawali, D. H. (2016). Review of ECG compression techniques and implementations. In Global Trends in Signal Processing, Information Computing and Communication (ICGTSPICC), 2016 International Conference on (pp. 623–627). 

Kabir, S. S., Rizve, M. N., & Hasan, M. K. (2017). ECG signal compression using data extraction and truncated singular value decomposition. 2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC), 5–7. 

Kanhe, R. K., & Hamde, S. T. (2016). ECG signal compression using 2-D DWT Hermite coefficients. In Signal and Information Processing (IConSIP), International Conference on (pp. 1–6). 

Khan, M., Aslam, F., Zaidi, T., & Khan, S. A. (2011). Wavelet based ecg denoising using signal-noise residue method. In Bioinformatics and Biomedical Engineering,(iCBBE) 2011 5th International Conference on (pp. 1–4). 

Khorrami, H., & Moavenian, M. (2010). A comparative study of DWT, CWT and DCT transformations in ECG arrhythmias classification. Expert Systems with Applications, 37(8), 5751–5757. 

Kim, B.-H., Noh, Y.-H., & Jeong, D.-U. (2013). Implementation of template matching based ecg compression algorithm for mobile application. In IT Convergence and Security (ICITCS), 2013 International Conference on (pp. 1–4). 

Kim, T.-Y., Noh, Y.-H., & Jeong, D.-U. (2015). Template Matching Compression Algorithm for Wearable ECG Measurement System Based on Multi Wireless Transmission Platform. In Advanced Information Networking and Applications Workshops (WAINA), 2015 IEEE 29th International Conference on (pp. 1–5). 

Ktata, S., & Mahjoubi, H. (2012). A zerotree coding for compression of ECG signal using EZW and SPIHT. In IECON 2012-38th Annual Conference on IEEE Industrial Electronics Society (pp. 1458–1464). 

Kumar, R., & Kumar, A. (2015a). Dual tree DWT analysis based electrocardiogram signal compression using zero coding technique. In Electronics and Communication Systems (ICECS), 2015 2nd International Conference on (pp. 624–629). 

Kumar, A., & others. (2017). Comparison between TP and fan data compression techniques of ECG signal. 2017 1st International Conference on Electronics, Materials Engineering and Nano-Technology (IEMENTech), 1–8. 

Kumar, R., & Kumar, A. (2015b). ECG signal compression algorithm based on joint-multiresolution analysis (J-MRA). In Electronics and Communication Systems (ICECS), 2015 2nd International Conference on (pp. 618–624). 

Kumar, R., Kumar, A., & Pandey, R. K. (2013). Beta wavelet based ECG signal compression using lossless encoding with modified thresholding. Computers & Electrical Engineering, 39(1), 130–140. 

Kumar, R., Kumar, A., & Singh, G. K. (2015). Electrocardiogram signal compression based on singular value decomposition (SVD) and adaptive scanning wavelet difference reduction (ASWDR) technique. AEU-International Journal of Electronics and Communications, 69(12), 1810–1822. 

Kumar, R., Kumar, A., & Singh, G. K. (2016a). Electrocardiogram signal compression based on 2D-transforms: a research overview. Journal of Medical Imaging and Health Informatics, 6(2), 285–296. 

Kumar, R., Kumar, A., & Singh, G. K. (2016b). Hybrid method based on singular value decomposition and embedded zero tree wavelet technique for ECG signal compression. Computer Methods and Programs in Biomedicine, 129, 135–148. 

Kumar, V., Saini, B. S., & Sunkaria, R. K. (n.d.). ECG Data Compression: A Review. 

Kuo, H.-C., Lin, Y.-M., & Wu, A.-Y. (2017). Compressive sensing based ECG monitoring with effective AF detection. In Acoustics, Speech and Signal Processing (ICASSP), 2017 IEEE International Conference on (pp. 1008–1012). 

Kumar, A., & others. (2017). Comparison between TP and fan data compression techniques of ECG signal. 2017 1st International Conference on Electronics, Materials Engineering and Nano-Technology (IEMENTech), 1–8. 

Lai, S.-C., Chien, W.-C., Lan, C.-S., Lee, M.-K., Luo, C.-H., & Lei, S.-F. (2013). An efficient DCT-IV-based ECG compression algorithm and its hardware accelerator design. In Circuits and Systems (ISCAS), 2013 IEEE International Symposium on (pp. 1296–1299). 

Lalos, A. S., Alonso, L., & Verikoukis, C. (2014). Model based compressed sensing reconstruction algorithms for ECG telemonitoring in WBANs. Digital Signal Processing, 35, 105–116. 

Law, K. L. E., & Leung, R. (2003). A design and implementation of active network socket programming. Microprocessors and Microsystems, 27(5–6), 277–284. 

Lee, S., Kim, J., & Lee, M. (2011). A real-time ECG data compression and transmission algorithm for an e-health device. IEEE Transactions on Biomedical Engineering, 58(9), 2448–2455. 

Lim, X. L., Kwan, B.-H., & Lee, P. F. (2016). A transform-based ECG compression using discrete tchebichef moments with global and local error measures as control. In Biomedical Engineering and Sciences (IECBES), 2016 IEEE EMBS Conference on (pp. 689–694). 

Liu, B., Zhang, Z., Fan, H., & Fu, Q. (2013). Compression via compressive sensing: A low-power framework for the telemonitoring of multi-channel physiological signals. In Bioinformatics and Biomedicine (BIBM), 2013 IEEE International Conference on (pp. 9–12). 

Liu, Z., Yu, W., Chen, C., Yang, B., & Guan, X. (2016). Adaptive compression ratio estimation for categorified sparsity in real-time ECG monitoring system. In Control Conference (CCC), 2016 35th Chinese (pp. 9439–9444). 

Luo, C.-H., Ma, W.-J., Juang, W.-H., Kuo, S.-H., Chen, C.-Y., Tai, P.-C., & Lai, S.-C. (2016). An ECG acquisition system prototype design with flexible PDMS dry electrodes and variable transform length DCT-IV based compression algorithm. IEEE Sensors Journal, 16(23), 8244–8254. 

Luo, K., Li, J., & Wu, J. (2014). A dynamic compression scheme for energy-efficient real-time wireless electrocardiogram biosensors. IEEE Transactions on Instrumentation and Measurement, 63(9), 2160–2169. 

Luz, E. J. da S., Schwartz, W. R., Cámara-Chávez, G., & Menotti, D. (2016). ECG-based heartbeat classification for arrhythmia detection: A survey. Computer Methods and Programs in Biomedicine, 127, 144–164. 

Liu, X., Zheng, Y., Phyu, M. W., Zhao, B., Je, M., & Yuan, X. (2011). Multiple functional ECG signal is processing for wearable applications of long-term cardiac monitoring. Biomedical Engineering, IEEE Transactions on, 58(2), 380-389. 

Ma, J., Zhang, T., & Dong, M. (2015). A novel ECG data compression method using adaptive fourier decomposition with security guarantee in e-health applications. IEEE Journal of Biomedical and Health Informatics, 19(3), 986–994. 

Madhukar, B., & Murthy, I. S. (1992). ECG data compression by modeling. In Proceedings of the Annual Symposium on Computer Application in Medical Care (p. 586). 

Mahajan, R., & Bansal, D. (2014). Hybrid ECG signal compression system: A step towards efficient tele-cardiology. In Optimization, Reliabilty, and Information Technology (ICROIT), 2014 International Conference on (pp. 437–442). 

Mallat, S. (1999). A wavelet tour of signal processing. Academic press. 

Mallat, S. G. (1989). Multiresolution approximations and wavelet orthonormal bases of L2 R. Transactions of the American Mathematical Society, 315(1), 69–87. 

Mammen, C. P., & Ramamurthi, B. (1990). Vector quantization for compression of multichannel ECG. IEEE Transactions on Biomedical Engineering, 37(9), 821–825. 

Manikandan, M. S., & Dandapat, S. (2014). Wavelet-based electrocardiogram signal compression methods and their performances: a prospective review. Biomedical Signal Processing and Control, 14, 73–107. 

Martis, R. J., Acharya, U. R., Mandana, K. M., Ray, A. K., & Chakraborty, C. (2012). Application of principal component analysis to ECG signals for automated diagnosis of cardiac health. Expert Systems with Applications, 39(14), 11792–11800. 

McAuliffe, J. D. (1993). Data compression of the exercise ECG using a Kohonen neural network. Journal of Electrocardiology, 26, 80–89. 

Messer, S. R., Agzarian, J., & Abbott, D. (2001). Optimal wavelet denoising for phonocardiograms. Microelectronics Journal, 32(12), 931–941. 

Miaou, S.-G., & Chao, S.-N. (2005). Wavelet-based lossy-to-lossless ECG compression in a unified vector quantization framework. IEEE Transactions on Biomedical Engineering, 52(3), 539–543. 

Miaou, S.-G., & Yen, H.-L. (2000). Quality driven gold washing adaptive vector quantization and its application to ECG data compression. IEEE Transactions on Biomedical Engineering, 47(2), 209–218. 

Mechael, P. N. (2006). Exploring health-related uses of mobile phones: an Egyptian case study (Doctoral dissertation, University of London).  

Mishra, A., & Agrawal, D. P. (2015). Continuous health condition monitoring by 24$\times$ 7 sensing and transmission of physiological data over 5-G cellular channels. In Computing, networking and communications (ICNC), 2015 international conference on (pp. 584–590). 

Motinath, V. A., Jha, C. K., & Kolekar, M. H. (2016). A novel ECG data compression algorithm using best mother wavelet selection. In Advances in Computing, Communications and Informatics (ICACCI), 2016 International Conference on (pp. 682–686). 

Mukhopadhyay, S. C. (2015). Wearable sensors for human activity monitoring: A review. Sensors Journal, IEEE, 15(3), 1321-1330. 

Mukhopadhyay, S. K., Mitra, S., & Mitra, M. (2013). ECG signal compression using ASCII character encoding and transmission via SMS. Biomedical Signal Processing and Control, 8(4), 354–363. 

Mukhopadhyay, S. K., Ahmad, M. O., & Swamy, M. N. S. (2018). An ECG compression algorithm with guaranteed reconstruction quality based on optimum truncation of singular values and ASCII character encoding. Biomedical Signal Processing and Control, 44, 288–306. 

Murmann, B. (2008, September). A/D converter trends: Power dissipation, scaling and digitally assisted architectures. In 2008 IEEE Custom Integrated Circuits Conference (pp. 105-112). IEEE.  

Neeru, N. (n.d.). A Survey on different Compression Techniques for ECG Data Reduction. 

Nunes, J.-C., & Nait-Ali, A. (2005). ECG compression by modelling the instantaneous module/phase of its DCT. Journal of Clinical Monitoring and Computing, 19(3), 207–214. 

Nygaard, R., Haugland, D., & i Stavanger, H. (1998). Complete coding scheme using optimal time domain ECG compression methods. In Signal Processing Conference (EUSIPCO 1998), 9th European (pp. 1–4). 

Pandhe, D. C., & Patil, H. T. (2014). ECG data compression for a portable ECG recorder and transmitter. In Advances in Communication and Computing Technologies (ICACACT), 2014 International Conference on (pp. 1–5). 

Padhy, S., & Dandapat, S. (2014). A new multilead ECG data compression method using higher-order singular value decomposition. In Communications (NCC), 2014 Twentieth National Conference on (pp. 1–4). 

Pandey, A., Singh, B., Saini, B. S., & Sood, N. (2016). A joint application of optimal threshold based discrete cosine transform and ASCII encoding for ECG data compression with its inherent encryption. Australasian Physical & Engineering Sciences in Medicine, 39(4), 833–855. 

Padhy, S., Sharma, L. N., & Dandapat, S. (2016). Multilead ECG data compression using SVD in multiresolution domain. Biomedical Signal Processing and Control, 23, 10–18. 

Paggetti, C., Lusini, M., Varanini, M., Taddei, A., & Marchesi, C. (1994). A multichannel template based data compression algorithm. In Computers in Cardiology 1994 (pp. 629–632). 

Pallavi, M., & Chandrashekar, H. M. (2016). Study and analysis of ECG compression algorithms. In Communication and Signal Processing (ICCSP), 2016 International Conference on (pp. 2028–2032). 

Pan, J., & Tompkins, W. J. (1985). A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng, 32(3), 230–236. 

Pandhe, D. C., & Patil, H. T. (2014). ECG data compression for a portable ECG recorder and transmitter. In Advances in Communication and Computing Technologies (ICACACT), 2014 International Conference on (pp. 1–5). 

Pandhe, D. C., & Patil, H. T. (2015). Review and enhancement of ECG data compression and reconstruction method for portable devices. In Energy Systems and Applications, 2015 International Conference on (pp. 490–495). 

Philips, W. (1993). ECG data compression with time-warped polynomials. IEEE Transactions on Biomedical Engineering, 40(11), 1095–1101. 

Pineda-López, F. M., Mart\’\inez-Fernández, A., Rojo-Álvarez, J. L., & Blanco-Velasco, M. (2014). Design and optimization of an ECG/holter hybrid system for mobile systems based on DSPic. In Computing in Cardiology Conference (CinC), 2014 (pp. 453–456). 

Polania, L. F., Carrillo, R. E., Blanco-Velasco, M., & Barner, K. E. (2015). Exploiting prior knowledge in compressed sensing wireless ECG systems. IEEE Journal of Biomedical and Health Informatics, 19(2), 508–519. 

Pooyan, M., Taheri, A., Moazami-Goudarzi, M., & Saboori, I. (2004). Wavelet compression of ECG signals using SPIHT algorithm. International Journal of Signal Processing, 1(3), 4. 

Qian, Z., & Chun_hui, Z. (2002). A Morphological Filtering Approach to Removing Noise in ECG Signals. Applied Science and Technology, 9, 3. 

Ravn-Fischer, A., Caidahl, K., Hartford, M., Karlsson, T., Kihlgren, S., Perers, E., Herlitz, J. (2012). Community-based gender perspectives of triage and treatment in suspected myocardial infarction. International Journal of Cardiology, 156(2), 139-143. 

Rajoub, B. A. (2002). An efficient coding algorithm for the compression of ECG signals using the wavelet transform. IEEE Transactions on Biomedical Engineering, 49(4), 355–362. 

Ranjeet, K., Kuamr, A., & Pandey, R. K. (2012). ECG signal compression using optimum wavelet filter bank based on Kaiser window. Procedia Engineering, 38, 2889–2902. 

Ranjeet, K., Kumar, A., & Pandey, R. K. (2013). An efficient compression system for ECG signal using QRS periods and CAB technique based on 2D DWT and Huffman coding. In Control, Automation, Robotics and Embedded Systems (CARE), 2013 International Conference on (pp. 1–6). 

Raeiatibanadkooki, M., Quchani, S. R., KhalilZade, M., & Bahaadinbeigy, K. (2016). Compression and encryption of ECG signal using wavelet and chaotically Huffman code in telemedicine application. Journal of Medical Systems, 40(3), 73. 

Ramachandran, B., & Bashyam, S. (2017). Development of real-time ecg signal monitoring system for telemedicine application. 2017 Third International Conference on Biosignals, Images and Instrumentation (ICBSII), 1–4. 

Reddy, B. M., Subbareddy, T. V., Reddy, S. O., & Elamaran, V. (2014). A tutorial review on data compression with detection of fetal heart beat from noisy ECG. In Control, Instrumentation, Communication and Computational Technologies (ICCICCT), 2014 International Conference on (pp. 1310–1314). 

Reddy, B. R. S., & Murthy, I. S. N. (1986). ECG data compression using Fourier descriptors. IEEE Transactions on Biomedical Engineering, (4), 428–434. 

Rodr\’\iguez, R., Mexicano, A., Bila, J., Cervantes, S., & Ponce, R. (2015). Feature extraction of electrocardiogram signals by applying adaptive threshold and principal component analysis. Journal of Applied Research and Technology, 13(2), 261–269. 

Saberkari, H., & Shamsi, M. (2012). Comparison of different algorithms for ECG signal compression based on transfer coding. In Industrial Electronics and Applications (ISIEA), 2012 IEEE Symposium on (pp. 341–345). 

Sahal, M. A., & John, J. (2014). A Novel Adaptive Algorithm for Holter ECG Data Compression. In Advances in Computing and Communications (ICACC), 2014 Fourth International Conference on (pp. 9–12). 

Saxena, S. C., Kumar, V., & Giri, V. K. (2007). Non-arrhythmic ECG Data Compression using EBP-NN and Feature Extraction using Wavelet Transform. JOURNAL-INSTITUTION OF ENGINEERS INDIA PART ET ELECTRONICS AND TELECOMMUNICATIONS ENGINEERING DIVISION, 88(L), 39. 

Sayood, K. (2005). Introduction to data compression. Elsevier. 

Saxena, N., & Shinghal, K. (2015). Extraction of various features of ECG signal. International Journal of Engineering Sciences and Emerging Technologies (IJESET), 7(4), 707–714. 

Sharma, L. N., Danadapat, S., & Mahanta, A. (2012). Multiscale PCA based Quality Controlled Denoising of Multichannel ECG Signals. International Journal of Information and Electronics Engineering, 2(2), 107. 

Sharma, L. N., Dandapat, S., & Mahanta, A. (2012). Multichannel ECG data compression based on multiscale principal component analysis. IEEE Transactions on Information Technology in Biomedicine, 16(4), 730–736. 

Shih, D.-H., Chiang, H.-S., Lin, B., & Lin, S.-B. (2010). An embedded mobile ECG reasoning system for elderly patients. Information Technology in Biomedicine, IEEE Transactions on, 14(3), 854-865. 

Siao, S.-R., Hsu, C.-C., Lin, M. P.-H., & Lee, S.-Y. (2014). A novel approach for ECG data compression in healthcare monitoring system. In Bioelectronics and Bioinformatics (ISBB), 2014 IEEE International Symposium on (pp. 1–4). 

Singh, A., Sharma, L. N., & Dandapat, S. (2016). Multi-channel ECG data compression using compressed sensing in eigenspace. Computers in Biology and Medicine, 73, 24–37. 

Singh, B., Kaur, A., & Singh, J. (2015). A review of ECG data compression techniques. International Journal of Computer Applications, 116(11). 

Soni, N., Saini, I., & Singh, B. (2018). Morphologically Robust Discrete Cosine Transform based Lossless ECG Compression with Access Control Quality. 2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC), 289–293. 

Sood, S., Mbarika, V., Jugoo, S., Dookhy, R., Doarn, C. R., Prakash, N., & Merrell, R. C. (2007). What is telemedicine? A collection of 104 peer-reviewed perspectives and theoretical underpinnings. Telemedicine and E-Health, 13(5), 573–590. Eren, A., Subasi, A., & Coskun, O. (2008). A decision support system for telemedicine through the mobile telecommunications platform. Journal of medical systems, 32(1), 31-35.  

Sun, Y., Chan, K. L., & Krishnan, S. M. (2002). ECG signal conditioning by morphological filtering. Computers in Biology and Medicine, 32(6), 465–479. 

Surekha, K. S., & Patil, B. P. (2014). ECG signal compression using hybrid 1D and 2D wavelet transform. In Science and Information Conference (SAI), 2014 (pp. 468–472). 

Sung, W.-T., & Chang, K.-Y. (2013). Evidence-based multi-sensor information fusion for remote health care systems. Sensors and Actuators A: Physical, 204, 1-19.  

Swarnkar, A., Kumar, A., & Khanna, P. (2014). Performance of wavelet filters for ECG compression based on linear predictive coding using different thresholding functions. In Devices, Circuits and Communications (ICDCCom), 2014 International Conference on (pp. 1–6). 

Sharma, L. N., Dandapat, S., & Mahanta, A. (2012). Multichannel ECG data compression based on multiscale principal component analysis. IEEE Transactions on Information Technology in Biomedicine, 16(4), 730–736. 

Touati, F., & Tabish, R. (2013). U-healthcare system: State-of-the-art review and challenges. Journal of medical systems, 37(3), 1-20. 

Tawfic, I., & Kayhan, S. (2015). Compressed sensing of ECG signal for wireless system with new fast iterative method. Computer Methods and Programs in Biomedicine, 122(3), 437–449. 

Tan, C., Zhang, L., & Wu, H. (2018). A novel blaschke unwinding adaptive-Fourier-decomposition-based signal compression algorithm with application on ECG signals. IEEE Journal of Biomedical and Health Informatics, 23(2), 672–682. 

Teijeiro, T., Félix, P., Presedo, J., & Zamarrón, C. (2013). An open platform for the protocolization of home medical supervision. Expert Systems with Applications, 40(7), 2607–2614. 

Toll, W. E. (1995). Socket programming in the data communications laboratory. In ACM SIGCSE Bulletin (Vol. 27, pp. 39–43). 

Tompkins, W. J. (1993). Biomedical digital signal processing. Editorial Prentice Hall. 

Trahanias, P. E. (1993). An approach to QRS complex detection using mathematical morphology. IEEE Transactions on Biomedical Engineering, 40(2), 201–205. 

Tripathi, R. P., & Mishra, G. R. (2017). Study of various data compression techniques used in lossless compression of ECG signals. 2017 International Conference on Computing, Communication and Automation (ICCCA), 1093–1097. 

Tsai, T.-H., & Tsai, F.-L. (2019). Efficient Lossless Compression Scheme for Multi-channel ECG Signal. ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 1289–1292. 

Varga, N., Bokor, L., & Takács, A. (2014). Context-aware IPv6 flow mobility for multi-sensor based mobile patient monitoring and tele-consultation. Procedia Computer Science, 40, 222–229. 

Wang, C., Jin, H., Qin, Y., & Zheng, L. (2016). A wearable ECG monitoring device with flexible embedded denoising and compression. In European Solid-State Circuits Conference, ESSCIRC Conference 2016: 42nd (pp. 87–90). 

Wang, X., & Meng, J. (2008). A 2-D ECG compression algorithm based on wavelet transform and vector quantization. Digital Signal Processing, 18(2), 179–188. 

Wissam, J., Latif, R., Toumanari, A., Elouardi, A., Hatim, A., & El Bcharri, O. (2017). Enhancement and compression of the electrocardiogram signal using the discrete wavelet transform. In Wireless Technologies, Embedded and Intelligent Systems (WITS), 2017 International Conference on (pp. 1–6). 

Wright, D. (1998). The International Telecommunication Union’s report on telemedicine and developing countries. Journal of Telemedicine and Telecare, 4(1_suppl), 75–79. 

Wu, H.-T., Tsai, W.-Y., & Chang, W.-W. (2012). Distributed source coding for mobile ECG signal monitoring. In ITS Telecommunications (ITST), 2012 12th International Conference on (pp. 259–263). 

Xu, G., Zeng, L., Zou, Y., Han, J., & Zeng, X. (2014). A 12.9-$µ$W 2-D ECG compression core based on NLSPIHT. In Solid-State and Integrated Circuit Technology (ICSICT), 2014 12th IEEE International Conference on (pp. 1–3). 

Xue, M., & Zhu, C. (2009). The socket programming and software design for communication based on client/server. In Circuits, Communications and Systems, 2009. PACCS’09. Pacific-Asia Conference on (pp. 775–777). 

Ye, C., Coimbra, M. T., & Kumar, B. V. K. V. (2010). Arrhythmia detection and classification using morphological and dynamic features of ECG signals. In Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE (pp. 1918–1921). 

ZHANG, H., CHEN, C., WU, Y., & LI, P. (2012). Decomposition and compression for ECG and EEG signals with sequence index coding method based on matching pursuit. The Journal of China Universities of Posts and Telecommunications, 19(2), 92–95. 

Zhang, J., Gu, Z., Yu, Z. L., & Li, Y. (2015). Energy-Efficient ECG Compression on Wireless Biosensors via Minimal Coherence Sensing and Weighted $$\$ell_1 $ Minimization Reconstruction. IEEE Journal of Biomedical and Health Informatics, 19(2), 520–528. 

Zhang, P., Zhang, Q., Akutagawa, M., Kinouchi, Y., & Konaka, S. (2013). ECG signal pre-processing by lifting scheme constructing multi-resolution morphological decomposition. Information Technology Journal, 12(2), 315–322. 

Zidelmal, Z., Amirou, A., Adnane, M., & Belouchrani, A. (2012). QRS detection based on wavelet coefficients. Computer Methods and Programs in Biomedicine, 107(3), 490–496. 

Zigel, Y., Cohen, A., Abu-Ful, A., Wagshal, A., & Katz, A. (1997). Analysis by synthesis ECG signal compression. In Computers in Cardiology 1997 (pp. 279–282). 

Zigel, Y., Cohen, A., & Katz, A. (2000). ECG signal compression using analysis by synthesis coding. IEEE Transactions on Biomedical Engineering, 47(10), 1308–1316.


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries with this repository, kindly contact us at pustakasys@upsi.edu.my or Whatsapp +60163630263 (Office hours only)