UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :thesis
Subject :QC Physics
Main Author :Nur Izzati Mahadi
Title :Optical trapping and manipulation of a single calix[4] arene microcluster in water
Place of Production :Tanjong Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2022
Corporate Name :Universiti Pendidikan Sultan Idris
PDF Guest :Click to view PDF file

Abstract : Universiti Pendidikan Sultan Idris
This research aimed to optically trap and manipulate a single calix[4]arene microcluster in water. The optically trapped microclusters were evaluated in terms of their optical stiffness and rotatability with respect to the variation of microclusters' effective radius and laser power density. The calixarene microclusters contained solution was prepared by sonicating a vial containing a mixture of 1.7 mg of calix[4]arene powder in 1 ml of deionised water for three minutes. Calix[4]arene microclusters in the effective radius range between 0.5 and 3.5 μm were optically trapped using a 976 nm laser at laser power densities between 0.67 and 2.30 MW/cm2 with laser sport size 1.1 μm. A quadrant photodiode (QPD) collected the scattered light from a single trapped microcluster. The QPD signal was analysed using a custom-made program named OSCal to determine the corner frequency of the optical trap. A quarter waveplate was introduced to the laser path to change the laser polarisation state and induce microcluster rotation. The rotatability of the trapped microcluster was determined by analysing the QPD signal and particle tracking method. Results showed that as the laser power density increases, the corner frequency of the trapped microcluster also increases. Furthermore, the trapped microcluster rotated faster as the laser power density increased regardless of the microcluster's effective radius. To conclude, calix[4]arene in the form of a microcluster can be optically trapped and respond to the circularly polarised light. The strength of the optical stiffness and the magnitude of the rotatability of a trapped calix[4]arene microcluster depend on the laser power density. This research implies the broadening potential of light-manipulated calix[4]arene as a microprobe or microactuator in a liquid.

References

Agayan, R. R., Horvath, T., McNaughton, B. H., Anker, J. N., & Kopelman, R. (2004). Optical manipulation of metal-silica hybrid nanoparticles. In K. Dholakia & G. C. Spalding (Eds.), Optical Trapping and Optical Micromanipulation (Vol. 5514, p. 502). SPIE. 

Agrawal, R., Smart, T., Nobre-Cardoso, J., Richards, C., Bhatnagar, R., Tufail, A., Shima, D., H. Jones, P., & Pavesio, C. (2016). Assessment of red blood cell deformability in type 2 diabetes mellitus and diabetic retinopathy by dual optical tweezers stretching technique. Scientific Reports, 6(1), 15873. 

An, L., Wang, C., Han, L., Liu, J., Huang, T., Zheng, Y., Yan, C., & Sun, J. (2019). Structural Design, Synthesis, and Preliminary Biological Evaluation of Novel Dihomooxacalix[4]arene-Based Anti-tumor Agents. Frontiers in Chemistry, 7, 856. 

Ashkin, A. (1970). Acceleration and Trapping of Particles by Radiation Pressure. Physical Review Letters, 24(4), 156–159. 

Ashkin, A. (1992). Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophysical Journal, 61(2), 569–582. 

Ashkin, A., & Dziedzic, J. M. (1975). Optical Levitation of Liquid Drops by Radiation Pressure. Science, 187(4181), 1073–1075. 

Augustyn, A. (2019). Refractive index. Encyclopedia Britannica. Encyclopaedia Britannica, Inc. 

Ayop, S. K. (2018). Working Principles of Optical Tweezers. In A. H. Ali, N. A. Awang, & A. S. Ameruddin (Eds.), Optical Fiber Laser Technology: Series 1 (1st ed., Vol. 1, pp. 105–116). Penerbit UTHM. 

Baldini, L., Sansone, F., & Casnati, A. (2013). Cation Complexation by Calixarenes. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Elsevier. 

Berg-Sørensen, K., & Flyvbjerg, H. (2004). Power spectrum analysis for optical tweezers. Review of Scientific Instruments, 75(3), 594–612. 

Blázquez-Castro, A. (2019). Optical Tweezers: Phototoxicity and Thermal Stress in Cells and Biomolecules. Micromachines, 10(8), 507. 

Bormuth, V., Jannasch, A., Ander, M., van Kats, C. M., van Blaaderen, A., Howard, J., & Schäffer, E. (2008). Optical trapping of coated microspheres. Optics Express, 16(18), 13831. 

Bruce, G. D., Rodríguez-Sevilla, P., & Dholakia, K. (2021). Initiating revolutions for optical manipulation: the origins and applications of rotational dynamics of trapped particles. Advances in Physics: X, 6(1). 

Bustamante, C. J., Chemla, Y. R., Liu, S., & Wang, M. D. (2021). Optical tweezers in single-molecule biophysics. Nature Reviews Methods Primers, 1(1), 25. 

Castberg, R. C. (2008). Characterisation and calibration of Optical tweezers. 

Chang, Y.-R., Hsu, L., & Chi, S. (2006). Optical trapping of a spherically symmetric sphere in the ray-optics regime: a model for optical tweezers upon cells. Applied Optics, 45(16), 3885. 

Cheng, Y. (2001). Optical Isolators, Circulators (pp. 381–394). JDS Uniphase Inc.  

Conteduca, D., Brunetti, G., Dell’Olio, F., Armenise, M. N., Krauss, T. F., & Ciminelli, C. (2019). Monitoring of individual bacteria using electro-photonic traps. Biomedical Optics Express, 10(7), 3463–3471. 

Corradini, M. G., & Julian McClements, D. (2017). Food .. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering (Vol. 3, pp. 47–56). Elsevier. 

Crick, A. J., Theron, M., Tiffert, T., Lew, V. L., Cicuta, P., & Rayner, J. C. (2014). Quantitation of Malaria Parasite-Erythrocyte Cell-Cell Interactions Using Optical Tweezers. Biophysical Journal, 107(4), 846–853. 

de Fatima, A., Fernandes, S., & Sabino, A. (2009). Calixarenes as New Platforms for Drug Design. Current Drug Discovery Technologies, 6(2), 151–170. 

Dholakia, K., & Lee, W. M. (2008). Optical Trapping Takes Shape: The Use of Structured Light Fields. Advances in Atomic, Molecular and Optical Physics (Vol. 56, pp. 261–337). 

Dienerowitz, M. (2008). Optical manipulation of nanoparticles: a review. Journal of Nanophotonics, 2(1), 021875. 

Dols-Perez, A., Marin, V., Amador, G. J., Kieffer, R., Tam, D., & Aubin-Tam, M.-E. (2019). Artificial Cell Membranes Interfaced with Optical Tweezers: A Versatile Microfluidics Platform for Nanomanipulation and Mechanical Characterization. ACS Applied Materials & Interfaces, 11(37), 33620–33627. 

Dong, Z., Yang, T., Wu, H., Brooks, J., Yang, R., Huang, Y., & Chang, L. (2021). Advanced microfluidic devices for cell electroporation and manipulation. In Micro and Nano Systems for Biophysical Studies of Cells and Small Organisms (pp. 105– 123). Elsevier. 

Douplik, A., Saiko, G., Schelkanova, I., & Tuchin, V. V. (2013). The response of tissue to laser light. Lasers for Medical Applications (pp. 47–109). Elsevier. 

Español, E., & Villamil, M. (2019). Calixarenes: Generalities and Their Role in Improving the Solubility, Biocompatibility, Stability, Bioavailability, Detection, and Transport of Biomolecules. Biomolecules, 9(3), 90. 

Farrow, R. E., Fielden, J. C., Knight, A. E., & Molloy, J. E. (2009). Single Molecule Studies of Myosins. Single Molecule Biology (pp. 1–33). Elsevier. 

Florin, E.-L., Pralle, A., Stelzer, E. H. K., & Hörber, J. K. H. (1998). Photonic force microscope calibration by thermal noise analysis. Applied Physics A: Materials Science & Processing, 66(7), S75–S78. 

Gao, X., Wang, Y., He, X., Xu, M., Zhu, J., Hu, X., Hu, X., Li, H., & Hu, C. (2020). Angular Trapping of Spherical Janus Particles. Small Methods, 4(12), 2000565.  

Goldner, L. S., Jofre, A. M., & Tang, J. (2010). Droplet Confinement and Fluorescence Measurement of Single Molecules. Methods in Enzymology (Vol. 472, pp. 61– 88). Academic Press Inc. 

Grier, D. G. (2003). A revolution in optical manipulation. Nature, 424(6950), 810–816. 

Gumpu, M. B., Sethuraman, S., Krishnan, U. M., & Rayappan, J. B. B. (2015). A review on detection of heavy metal ions in water – An electrochemical approach. Sensors and Actuators B: Chemical, 213, 515–533. 

Gutsche, C. D., & Bauer, L. J. (1985). Calixarenes. 13. The conformational properties of calix[4]arenes, calix[6]arenes, calix[8]arenes, and oxacalixarenes. Journal of the American Chemical Society, 107(21), 6052–6059. 

Han, F., Armstrong, T., Andres-Arroyo, A., Bennett, D., Soeriyadi, A., Alinezhad Chamazketi, A., Bakthavathsalam, P., Tilley, R. D., Gooding, J. J., & Reece, P. J. (2020). Optical tweezers-based characterisation of gold core-satellite plasmonic nano-assemblies incorporating thermo-responsive polymers. Nanoscale, 12(3), 1680–1687. 

Hawes, C., Osterrieder, A., Sparkes, I. A., & Ketelaar, T. (2010). Optical tweezers for the micromanipulation of plant cytoplasm and organelles. Current Opinion in Plant Biology, 13(6), 731–735. 

He, Q., Chen, X., He, Y., Guan, T., Feng, G., Lu, B., Wang, B., Zhou, X., Hu, L., & Cao, D. (2019). Spectral-optical-tweezer-assisted fluorescence multiplexing system for QDs-encoded bead-array bioassay. Biosensors and Bioelectronics, 129(December 2018), 107–117. 

Hegner, M., Gerber, C., Arntz, Y., Zhang, J., Bertoncini, P., Husale, S., Lang, H. P., & Grange, W. (2003). Biological Single Molecule Applications and Advanced Biosensing. 

Herranen, J., Markkanen, J., Videen, G., & Muinonen, K. (2019). Non-spherical particles in optical tweezers: A numerical solution. PLOS ONE, 14(12), e0225773.  

Hindi, S. S. Z. (2016). Birefringence of bio-based liquid crystals. BioCrystals Journal, 1, 13–25. https://www.researchgate.net/publication/299200951 

Hiroyuki Fujiwara. (2007). Spectroscopic Ellipsometry: Principles and Applications. Wiley. 

Jauffred, L., Taheri, S. M.-R., Schmitt, R., Linke, H., & Oddershede, L. B. (2015). Optical Trapping of Gold Nanoparticles in Air. Nano Letters, 15(7), 4713–4719. 

Jin Mei, C., & Ainliah Alang Ahmad, S. (2021). A review on the determination heavy metals ions using calixarene-based electrochemical sensors. In Arabian Journal of Chemistry (Vol. 14, Issue 9, p. 103303). Elsevier B.V. 

Jurado, A., & Kiggins, J. (2010). Polystyrene Bead Size Behavior in Optical Trapping Introduction. 

Kato, Y., & Teraji, T. (2018). Key technologies for device fabrications and materials characterizations. Power Electronics Device Applications of Diamond Semiconductors (pp. 219–294). Elsevier. 

Keloth, A., Anderson, O., Risbridger, D., & Paterson, L. (2018). Single cell isolation using optical tweezers. Micromachines, 9(9), 434. 

Konyshev, I., Byvalov, A., Ananchenko, B., Fakhrullin, R., Danilushkina, A., & Dudina, L. (2020). Force interactions between Yersiniae lipopolysaccharides and monoclonal antibodies: An optical tweezers study. Journal of Biomechanics, 99, 109504. 

Kress, H., Stelzer, E. H. K., & Rohrbach, A. (2014). Measuring and adjusting the trapping position in optical tweezers.  https://www.researchgate.net/publication/237114378 

Léandri, J., & Würger, A. (2013). Trapping energy of a spherical particle on a curved liquid interface. Journal of Colloid and Interface Science, 405, 249–255. 

Li, H., Zhang, Y., Wang, X., Xiong, D., & Bai, Y. (2007). Calixarene capped quantum dots as luminescent probes for Hg2+ ions. Materials Letters, 61(7), 1474–1477. 

Li, X., & Sun, D. (2019). Automated transportation of microparticles in vivo. Control Systems Design of Bio-Robotics and Bio-Mechatronics with Advanced Applications (pp. 281–328). Elsevier Inc. 

Lin, J., & Li, Y. (2014). Optical trapping and rotation of airborne absorbing particles with a single focused laser beam. Applied Physics Letters, 104(10), 101909. 

Liu, T. H., Chiang, W. Y., Usman, A., & Masuhara, H. (2016). Optical Trapping Dynamics of a Single Polystyrene Sphere: Continuous Wave versus Femtosecond Lasers. Journal of Physical Chemistry C, 120(4), 2392–2399. 

Lockwood, D. J. (2016). Encyclopedia of Color Science and Technology. In M. R. Luo (Ed.), Encyclopedia of Color Science and Technology. Springer, New York. 

Lokesh, M., Vaippully, R., Bhallamudi, V. P., Prabhakar, A., & Roy, B. (2021). Realization of pitch-rotational torque wrench in two-beam optical tweezers. Journal of Physics Communications, 5(11), 115016. 

Lv, X.-J., Chen, Z., Ma, J.-B., & Zhang, Y.-H. (2020). Evaporation of mixed citric acid/(NH4)2SO4/H2O particles: Volatility of organic aerosol by using optical tweezers. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 226, 117552. 

Ma, G., Hu, C., Li, S., Gao, X., Li, H., & Hu, X. (2019). Simultaneous, hybrid single-molecule method by optical tweezers and fluorescence. Nami Jishu Yu Jingmi Gongcheng/Nanotechnology and Precision Engineering, 2(4), 145–156. 

Mahadi, N. I., Ayop, S. K., Safuan, M., & Yeng, M. (2022). Power Density Limit for Stable Optical Trapping of a Single Microcluster of Calix[4]arene in Water. Central Asia and The Caucasus, 23(1), 3000–3007. 

Mas, J., Farre, A., Cuadros, J., Juvells, I., & Carnicer, A. (2011). Understanding Optical Trapping Phenomena: A Simulation for Undergraduates. IEEE Transactions on Education, 54(1), 133–140. 

Matvieiev, Y., Solovyov, A., Shishkina, S., Shishkin, O., Katz, A., Boiko, V., & Kalchenko, V. (2014). Upper-rim calixarene phosphines consisting of multiple lower-rim OH functional groups: synthesis and characterisation. Supramolecular Chemistry, 26(10–12), 825–835. 

McIntyre, J. A., Watts, T. L., & Jones, F. C. (1963). Characteristics of a heavy-ion detection system. Nuclear Instruments and Methods, 21, 281–295. 

MIT Department of Physics. (2017). Optical Trapping. http://web.mit.edu/8.13/www/JLExperiments/JLExp51.pdf 

Mohanty, S. K., Mohanty, K. S., & Gupta, P. K. (2005). Dynamics of Interaction of RBC with optical tweezers. Optics Express, 13(12), 4745. 

Mokhtari, B., & Pourabdollah, K. (2013). Calorimetric Investigation of Nano-Basket’s Binding. Asian Journal of Chemistry, 25(1), 13–18. 

Mondal, D., Bandyopadhyay, S. N., & Goswami, D. (2019). Elucidating optical field directed hierarchical self-assembly of homogenous versus heterogeneous nanoclusters with femtosecond optical tweezers. PLOS ONE, 14(10), e0223688. 

Mondal, D., Dinda, S., Bandyopadhyay, S. N., & Goswami, D. (2019). Polarization induced control of optical trap potentials in binary liquids. Scientific Reports, 9(1), 700. 

Mondal, D., & Goswami, D. (2015). Controlling local temperature in water using femtosecond optical tweezer. Biomedical Optics Express, 6(9), 3190. 

Morales, A., Santana, A., Althoff, G., & Melendez, E. (2011). Host–guest interactions between calixarenes and Cp2NbCl2. Journal of Organometallic Chemistry, 696(13), 2519–2527. 

Murphy, D. B., Spring, K. R., Fellers, T. J., & Davidson, M. W. (2022). Principles of Birefringence. Nikon Instruments Inc. Retrieved February 4, 2022, from https://www.microscopyu.com/techniques/polarized-light/principles-of- birefringence 

Naseer, M. M., Ahmed, M., & Hameed, S. (2017). Functionalized calix[4]arenes as potential therapeutic agents. Chemical Biology & Drug Design, 89(2), 243–256. 

Neuman, K. C., & Block, S. M. (2004). Optical trapping. Review of Scientific Instruments, 75(9), 2787–2809. 

Nieminen, T. A., Rubinsztein-Dunlop, H., & Heckenberg, N. R. (2000). Laser trapping of non-spherical particles. 5th Conference on Electromagnetic and Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, 1–5. 

Nørrelykke, S. F., & Flyvbjerg, H. (2010). Power spectrum analysis with least-squares fitting: Amplitude bias and its elimination, with application to optical tweezers and atomic force microscope cantilevers. Review of Scientific Instruments, 81(7), 075103. 

O’Neil, A. T., & Padgett, M. J. (2002). Rotational control within optical tweezers by use of a rotating aperture. Optics Letters, 27(9), 743. 

Osterman, N. (2010). TweezPal – Optical tweezers analysis and calibration software. Computer Physics Communications, 181(11), 1911–1916. 

Pan, Y., Hu, X., & Guo, D. (2021). Biomedical Applications of Calixarenes: State of the Art and Perspectives. Angewandte Chemie International Edition, 60(6), 2768– 2794. 

Pan, Y.-L., Hill, S. C., & Coleman, M. (2012). Photophoretic trapping of absorbing particles in air and measurement of their single-particle Raman spectra. Optics Express, 20(5), 5325. 

Parker, D., & Butler, S. J. (2011). Macrocycles. Construction, Chemistry and Nanotechnology Applications. By Frank Davis and Séamus Higson. Angewandte Chemie International Edition, 50(50), 11842–11842. 

Paul, A., Padmapriya, P., & Natarajan, V. (2017). Diagnosis of malarial infection using change in properties of optically trapped red blood cells. Biomedical Journal, 40(2), 101–105. 

Paul, A., Pallavi, R., Tatu, U. S., & Natarajan, V. (2013). The bystander effect in optically trapped red blood cells due to Plasmodium falciparum infection. Transactions of The Royal Society of Tropical Medicine and Hygiene, 107(4), 220–223. 

Pesce, G., Jones, P. H., Maragò, O. M., & Volpe, G. (2020). Optical tweezers: theory and practice. The European Physical Journal Plus, 135(12), 949. 

Qureshi, I., Qazi, M. A., & Memon, S. (2009). A versatile calixarene derivative for transportation systems and sensor technology. Sensors and Actuators, B: Chemical, 141(1), 45–49. 

Rahman, M. R. U., Kwak, T. J., Woehl, J. C., & Chang, W. (2021). Quantitative analysis of the three-dimensional trap stiffness of a dielectrophoretic corral trap. Electrophoresis, 42(5), 644–655. 

Ranaweera, A., & Bamieh, B. (2005). Modelling, identification, and control of a spherical particle trapped in an optical tweezer. International Journal of Robust and Nonlinear Control, 15(16), 747–768. 

Ranha Neves, A. A., & Cesar, C. L. (2019). Analytical calculation of optical forces on spherical particles in optical tweezers: tutorial. Journal of the Optical Society of America B, 36(6), 1525. 

Redding, B., & Pan, Y.-L. (2015). Optical trap for both transparent and absorbing particles in air using a single shaped laser beam. Optics Letters, 40(12), 2798. 

Sarshar, M., Wong, W. T., & Anvari, B. (2014). Comparative study of methods to calibrate the stiffness of a single-beam gradient-force optical tweezers over various laser trapping powers. Journal of Biomedical Optics, 19(11), 115001.  

Satheeshkumar, K. S., Vasu, G., Vishalakshi, V., Moni, M. S., & Jayakumar, R. (2004). Calix[8]arene-mediated self-assembly of tetrapeptide H-Leu-Leu-Ile-Leu-OMe. Journal of Molecular Recognition, 17(1), 67–75. 

Shindel, M. M., Swan, J. W., & Furst, E. M. (2013). Calibration of an optical tweezer microrheometer by sequential impulse response. Rheologica Acta, 52(5), 455– 465. 

Singh, D. (2015). Birefringence or Double Refraction. Fundamentals of Optics (2nd ed., pp. 492–493). PHI Learning Pvt. Ltd. 

Singh, M., & Vinodh Kumar, S. (2018). Mineralogical, Chemical, and Thermal Characterizations of Historic Lime Plasters of Thirteenth–Sixteenth-century Daulatabad Fort, India. Studies in Conservation, 63(8), 482–496. 

Soler, J. M. (2008). Force calibration of a plurality of optical traps by video-based methods. Master Science Thesis 

Spesyvtseva, S. E. S., & Dholakia, K. (2016). Trapping in a Material World. ACS Photonics, 3(5), 719–736. 

Suarez, R. A. B., Neves, A. A. R., & Gesualdi, M. R. R. (2021). Optical trapping with non-diffracting Airy beams array using a holographic optical tweezers. Optics & Laser Technology, 135(June 2020), 106678. 

Supian, F. L., Kheng, D. L. C., & Razali, A. S. (2017). Conductivity Comparison of Calix [ 8 ] arene- MWCNT s Through Spin Coating Technique. Sains Malaysiana, 46(1), 91–96. 

Supian, F. L., Richardson, T. H., Deasy, M., KElleher, F., Ward, J. P., & McKee, V. (2010). A Surface Potential Study of Ion-Uptake by 5,11,17,23-Tetra-Tert-Butyl- 25,27-Diethoxycarbonyl Methyleneoxy-26,28,Dihydroxycalix[4]Arene and 5,17- (3-Nitrobenzylideneamino)-11,23-Di-Tert-Butyl-25,27-Diethoxycarbonyl Methyleneoxy-26,28-Dihydroxycalix[4]Are. Sains Malaysiana, 39(3), 423–433. 

Supian, F. L., Richardson, T. H., Deasy, M., Kelleher, F., Ward, J. P., & McKee, V. (2010). Interaction between Langmuir and Langmuir-Blodgett films of two calix[4]arenes with aqueous copper and lithium ions. Langmuir, 26(13), 10906– 10912. 

Tolic-Nørrelykke, S. F., Schäffer, E., Howard, J., Pavone, F. S., Jülicher, F., & Flyvbjerg, H. (2006). Calibration of optical tweezers with positional detection in the back focal plane. Review of Scientific Instruments, 77(10), 103101. 

Toutianoush, A., Schnepf, J., el Hashani, A., & Tieke, B. (2005). Selective Ion Transport and Complexation in Layer-by-Layer Assemblies of p-Sulfonato-calix[n]arenes and Cationic Polyelectrolytes. Advanced Functional Materials, 15(4), 700–708. 

Townes-Anderson, E., St Jules, R. S., Sherry, D. M., Lichtenberger, J., & Hassanain, M. (1998). Micromanipulation of retinal neurons by optical tweezers. Molecular Vision, 4, 12. http://www.ncbi.nlm.nih.gov/pubmed/9701608 

Wang, L., Liang, P., Liu, Z., Zhou, A., & Yuan, L. (2011). An optical trapping based microfiber vibration sensor. 21st International Conference on Optical Fiber Sensors, 7753, 77530F. 

Wang, M. D., Yin, H., Landick, R., Gelles, J., & Block, S. M. (1997). Stretching DNA with optical tweezers. Biophysical Journal, 72(3), 1335–1346. 

Wasserman, M. R., & Liu, S. (2019). A Tour de Force on the Double Helix: Exploiting DNA Mechanics To Study DNA-Based Molecular Machines. Biochemistry, 58(47), 4667–4676. 

Wenzel, T. J. (2012). 8.28 Spectroscopic Analysis: NMR and Shift Reagents. Comprehensive Chirality (Vol. 8, pp. 545–570). Elsevier Ltd. 

Whitley, K. D., Comstock, M. J., & Chemla, Y. R. (2017). High-Resolution Optical Tweezers Combined With Single-Molecule Confocal Microscopy. Methods in Enzymology (Vol. 582, pp. 137–169). Academic Press Inc. 

Wu, M., Ling, D., Ling, L., Li, W., & Li, Y. (2017). Stable optical trapping and sensitive characterization of nanostructures using standing-wave Raman tweezers. Scientific Reports, 7(1), 42930.  

Xie, M. (2021). Principle of optical tweezers trapping. Autonomous Robot-Aided Optical Manipulation for Biological Cells (pp. 3–13). Elsevier. 

Yoshida, T. (2015). Stimuli-sensitive polymers for drug delivery and diagnostic systems interacting with biosurfaces. Switchable and Responsive Surfaces and Materials for Biomedical Applications (pp. 235–258). Elsevier. 

Yousaf, A., Abd Hamid, S., M Bunnori, N., & Adekunle, I. A. (2015). Applications of calixarenes in cancer chemotherapy: facts and perspectives. Drug Design, Development and Therapy, 9, 2831. 

Yunus Hamid, M. (2018). The Development of Optical Stiffness Calibration Software Based on Equipartition Theorem, Boltzmann Statistics and Power Spectrum Density. 

Yusof, M. F. M., Ayop, S. K., Supian, F. L., & Juahir, Y. (2020). Optical trapping of organic solvents in the form of microdroplets in water. Chemical Physics Letters, 749(April), 137407. 

Zaltron, A., Merano, M., Mistura, G., Sada, C., & Seno, F. (2020). Optical tweezers in single-molecule experiments. The European Physical Journal Plus, 135(11), 896. 

Zhang, Z., Kimkes, T. E. P., & Heinemann, M. (2019). Manipulating rod-shaped bacteria with optical tweezers. Scientific Reports, 9(19086), 1–9. 

Zhou, Y., Li, H., & Yang, Y.-W. (2015). Controlled drug delivery systems based on calixarenes. Chinese Chemical Letters, 26(7), 825–828. 

 


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.