UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :thesis
Subject :HF Commerce
Main Author :Al-Samarraay, Mohammed S. Mahmoud
Title :Multi -Perspectives evaluation and benchmarking of real-time sign language recognition systems based on fuzzy multi-criteria decision analysis
Place of Production :Tanjong Malim
Publisher :Fakulti Seni, Komputeran dan Industri Kreatif
Year of Publication :2022
Corporate Name :Universiti Pendidikan Sultan Idris
PDF Guest :Click to view PDF file

Abstract : Universiti Pendidikan Sultan Idris
The real-time Sign Language Recognition Systems (SLRSs) have been developed recently to assist the deaf and dumb community in translating hand gestures to their spoken language equivalents. However, the multidimensional evaluation and benchmarking of these systems considered a Multi-attribute Decision-Making (MADM) problem due to the presence of several issues, including multiple evaluation criteria, multi ortance, and criteria confliction. In this study, a new extension of the Fuzzy Decision by Opinion Score Method (FDOSM) for evaluating and benchmarking SLRSs is developed under a Pythagorean Fuzzy Set (PFS). Fundamentally, the methodology divided into 4 phases. The first phase is the preliminary study, while the construction of the decision matrix is the second phase, then the third phase is the formulation of the proposed methods, and the fourth phase is the results evaluation. Results indicate the following: (1) individual benchmarking results of real-time SLRS showed high variation based on the preference of each Decision Maker (DM). (2) The group benchmarking results for Pythagorean Fuzzy Decision by Opinion Score Method - Interactive Hybrid Arithmetic Mean PFDOSM-IHAM indicate that the 29th real-time SLRS was the best, whereas the worst real-time SLRS was attributed to SLRS (6th). While the results of group benchmarking for Interval-Valued Pythagorean Fuzzy Decision by Opinion Score Method IVP-FDOSM reveal that the 10th real-time SLRS was the optimal one and the 6th was the worst. In addition, the rates of ranking match between the group benchmarking and each DM captured and discussed from analytical perspective. (3) for the results evaluation, two MADM assessments, namely, systematic ranking and comparative analysis are used to validate the robustness of the proposed MADM methods. The research contributed to the deaf – mute community by providing the suitable SLRS selection bases on their life needs, benefiting the SLRS industrial field, and the special education centers.

References

Abdulkareem, K. H. (2020). A Novel Multi-Perspective Benchmarking Framework for Selecting Image Dehazing Intelligent Algorithms Based on BWM and Group VIKOR Techniques. International Journal of Information Technology & Decision Making.  

 

Abdulkareem, K. H., Arbaiy, N., Zaidan, A. A., Zaidan, B. B., Albahri, O. S., Alsalem, M. A., & Salih, M. M. (2020). A new standardisation and selection framework for real-time image dehazing algorithms from multi-foggy scenes based on fuzzy Delphi and hybrid multi-criteria decision analysis methods. Neural Computing and Applications. doi:10.1007/s00521-020-05020-4 

 

Abhishek, K. S., Qubeley, L. C. F., & Ho, D. (2016). Glove-based hand gesture recognition sign language translator using capacitive touch sensor. Paper presented at the Electron Devices and Solid-State Circuits (EDSSC), 2016 IEEE International Conference on. 

 

Abualola, H., Al Ghothani, H., Eddin, A. N., Almoosa, N., & Poon, K. (2016). Flexible gesture recognition using wearable inertial sensors. Paper presented at the Circuits and Systems (MWSCAS), 2016 IEEE 59th International Midwest Symposium on. 

 

Adnan, N. H., Wan, K., Shahriman, A., Zaaba, S., nisha Basah, S., Razlan, Z. M., . . . Aziz, A. A. (2012). Measurement of the flexible bending force of the index and middle fingers for virtual interaction. Procedia Engineering, 41, 388-394.  

 

Aguiar, S., Erazo, A., Romero, S., Garcés, E., Atiencia, V., & Figueroa, J. P. (2016). Development of a smart glove as a communication tool for people with hearing impairment and speech disorders. Paper presented at the Ecuador Technical Chapters Meeting (ETCM), IEEE. 

 

Ahmed, M., Zaidan, B., Zaidan, A., Salih, M. M., Al-qaysi, Z., & Alamoodi, A. Based on wearable sensory device in 3D-printed humanoid: A new real-time sign language recognition system. Measurement, 168, 108431.  

 

Ahmed, M., Zaidan, B., Zaidan, A., Salih, M. M., Al-qaysi, Z., & Alamoodi, A. (2021). Based on wearable sensory device in 3D-printed humanoid: A new real-time sign language recognition system. Measurement, 168, 108431.  

 

Ahmed, M. A., Zaidan, B. B., Zaidan, A. A., Salih, M. M., & Lakulu, M. M. b. (2018). A Review on Systems-Based Sensory Gloves for Sign Language Recognition State of the Art between 2007 and 2017. Sensors, 18(7), 2208.  

 

 Ahmed, S., Islam, R., Zishan, M. S. R., Hasan, M. R., & Islam, M. N. (2015). Electronic speaking system for speech impaired people: Speak up. Paper presented at the Electrical Engineering and Information Communication Technology (ICEEICT), 2015 International Conference on. 

 

Ahmed, S. F., Ali, S. M. B., & Qureshi, S. S. M. (2010). Electronic speaking glove for speechless patients, a tongue to a dumb. Paper presented at the Sustainable Utilization and Development in Engineering and Technology (STUDENT), 2010 IEEE Conference on. 

 

Akram, M., & Ali, G. (2020). Hybrid models for decision-making based on rough Pythagorean fuzzy bipolar soft information. Granular Computing, 5(1), 1-15.  

 

Akram, M., Dudek, W. A., & Ilyas, F. (2019). Group decision-making based on pythagorean fuzzy TOPSIS method. International Journal of Intelligent Systems, 34(7), 1455-1475.  

 

Alaa, M., Albakri, I. S. M. A., Singh, C. K. S., Hammed, H., Zaidan, A., Zaidan, B., . . . Almahdi, E. (2019). Assessment and ranking framework for the English skills of pre-service teachers based on fuzzy Delphi and TOPSIS methods. IEEE Access, 7, 126201-126223.  

 

Albahri, A., Albahri, O., Zaidan, A., Alnoor, A., Alsattar, H., Mohammed, R., . . . Alazab, M. (2022). Integration of fuzzy-weighted zero-inconsistency and fuzzy decision by opinion score methods under a q-rung orthopair environment: a distribution case study of COVID-19 vaccine doses. Computer Standards & Interfaces, 80, 103572.  

 

Albahri, A., & Hamid, R. A. (2020). Detection-based Prioritisation: Framework of Multi-laboratory Characteristics for Asymptomatic COVID-19 Carriers Based on Integrated Entropy–TOPSIS Methods. Artificial Intelligence in Medicine, 101983.  

 

Albahri, A., Zaidan, A., Albahri, O., Zaidan, B., & Alsalem, M. J. J. o. m. s. (2018). Real-time fault-tolerant mHealth system: Comprehensive review of healthcare services, opens issues, challenges and methodological aspects. 42(8), 137.  

 

Albahri, A. S., Alwan, J. K., Taha, Z. K., Ismail, S. F., Hamid, R. A., Zaidan, A., . . . Alsalem, M. (2021). IoT-based telemedicine for disease prevention and health promotion: State-of-the-Art. Journal of Network and Computer Applications, 173, 102873.  

 

Albahri, A. S., Zaidan, A. A., Albahri, O. S., Zaidan, B. B., Alamoodi, A. H., Shareef, A. H., . . . Mohammed, K. I. (2021). Development of IoT-based mhealth framework for various cases of heart disease patients. Health and Technology. doi:10.1007/s12553-021-00579-x 

 

Albahri, O., Albahri, A., Zaidan, A., Zaidan, B., Alsalem, M., Mohsin, A., . . . Enaizan, O. (2019). Fault-tolerant mHealth framework in the context of IoT-based real-time wearable health data sensors. IEEE Access, 7, 50052-50080.  

 

Albahri, O., Zaidan, A., Albahri, A., Alsattar, H., Mohammed, R., Aickelin, U., . . . Alamoodi, A. (2021). Novel dynamic fuzzy decision-making framework for COVID-19 vaccine dose recipients. Journal of Advanced Research.  

 

Albahri, O., Zaidan, A., Albahri, A., Zaidan, B., Abdulkareem, K. H., Al-Qaysi, Z., . . . Alesa, R. (2020). Systematic review of artificial intelligence techniques in the detection and classification of COVID-19 medical images in terms of evaluation and benchmarking: Taxonomy analysis, challenges, future solutions and methodological aspects. Journal of Infection and Public Health, 13(10), 1381-1396.  

 

Albahri, O., Zaidan, A., Zaidan, B., Hashim, M., Albahri, A., & Alsalem, M. J. J. o. m. s. (2018). Real-time remote health-monitoring Systems in a Medical Centre: A review of the provision of healthcare services-based body sensor information, open challenges and methodological aspects. 42(9), 164.  

 

Albahri, O. S. (2021). New mHealth hospital selection framework supporting decentralised telemedicine architecture for outpatient cardiovascular disease-based integrated techniques: Haversine-GPS and AHP-VIKOR. Ambient Intelligence and Humanized Computing. doi:10.1007/s12652-021-02897-4 

 

Albahri, O. S., Zaidan, A. A., Salih, M. M., Zaidan, B. B., Khatari, M. A., Ahmed, M. A., . . . Alazab, M. (2021). Multidimensional benchmarking of the active queue management methods of network congestion control based on extension of fuzzy decision by opinion score method. International Journal of Intelligent Systems, 36(2), 796-831.  

 

Alinaghian, M., Tirkolaee, E. B., Dezaki, Z. K., Hejazi, S. R., & Ding, W. (2021). An augmented Tabu search algorithm for the green inventory-routing problem with time windows. Swarm and Evolutionary Computation, 60, 100802.  

 

Alinezhad, A., & Khalili, J. (2019). New methods and applications in multiple attribute decision making (MADM) (Vol. 277): Springer. 

 

Almahdi, E., Zaidan, A., Zaidan, B., Alsalem, M., Albahri, O., & Albahri, A. (2019a). Mobile-based patient monitoring systems: A prioritisation framework using multi-criteria decision-making techniques. Journal of medical systems, 43(7), 219.  

 

Almahdi, E., Zaidan, A., Zaidan, B., Alsalem, M., Albahri, O., & Albahri, A. (2019b). Mobile patient monitoring systems from a benchmarking aspect: Challenges, open issues and recommended solutions. Journal of medical systems, 43(7), 207.  

 

Alsalem, M., Alsattar, H., Albahri, A., Mohammed, R., Albahri, O., Zaidan, A., . . . Zaidan, B. (2021). Based on T-spherical fuzzy environment: A combination of FWZIC and FDOSM for prioritising COVID-19 vaccine dose recipients. Journal of infection and public health, 14(10), 1513-1559.  

 

Alsalem, M., Zaidan, A., Zaidan, B., Albahri, O., Alamoodi, A., Albahri, A., . . . Mohammed, K. (2019). Multiclass benchmarking framework for automated acute Leukaemia detection and classification based on BWM and group-VIKOR. Journal of medical systems, 43(7), 212.  

 

Alsalem, M., Zaidan, A., Zaidan, B., Hashim, M., Albahri, O., Albahri, A., . . . Mohammed, K. J. J. o. m. s. (2018). Systematic review of an automated multiclass detection and classification system for acute Leukaemia in terms of evaluation and benchmarking, open challenges, issues and methodological aspects. 42(11), 204.  

 

Alvi, A. K., Azhar, M. Y. B., Usman, M., Mumtaz, S., Rafiq, S., Rehman, R. U., & Ahmed, I. (2004). Pakistan sign language recognition using statistical template matching. International Journal of Information Technology, 1(1), 1-12.  

 

Aly, S., & Aly, W. (2020). DeepArSLR: A Novel Signer-Independent Deep Learning Framework for Isolated Arabic Sign Language Gestures Recognition. IEEE Access, 8, 83199-83212.  

 

Anderson, R., Wiryana, F., Ariesta, M. C., & Kusuma, G. P. (2017). Sign language recognition application systems for deaf-mute people: a review based on input-process-output. Procedia Computer Science, 116, 441-448.  

 

Ani, A. I. C., Rosli, A. D., Baharudin, R., Abbas, M. H., & Abdullah, M. F. (2014). Preliminary study of recognizing alphabet letter via hand gesture. Paper presented at the 2014 International Conference on Computational Science and Technology (ICCST). 

 

Arif, A., Rizvi, S. T. H., Jawaid, I., Waleed, M. A., & Shakeel, M. R. (2016). Techno-Talk: An American Sign Language (ASL) Translator. Paper presented at the Control, Decision and Information Technologies (CoDIT), 2016 International Conference on. 

 

Ayyildiz, E., Erdogan, M., & Gumus, A. T. (2021). A Pythagorean fuzzy number-based integration of AHP and WASPAS methods for refugee camp location selection problem: a real case study for Istanbul, Turkey. Neural Computing and Applications, 1-18.  

 

Bajpai, D., Porov, U., Srivastav, G., & Sachan, N. (2015). Two Way Wireless Data Communication and American Sign Language Translator Glove for Images Text and Speech Display on Mobile Phone. Paper presented at the Communication Systems and Network Technologies (CSNT), 2015 Fifth International Conference on. 

Basnin, N., Nahar, L., & Hossain, M. S. (2021). An Integrated CNN-LSTM Model for Bangla Lexical Sign Language Recognition. Paper presented at the Proceedings of International Conference on Trends in Computational and Cognitive Engineering. 

 

Bhatnagar, V. S., Magon, R., Srivastava, R., & Thakur, M. K. (2015). A cost effective Sign Language to voice emulation system. Paper presented at the 2015 Eighth International Conference on Contemporary Computing (IC3). 

 

Borghetti, M., Sardini, E., & Serpelloni, M. (2013). Sensorized glove for measuring hand finger flexion for rehabilitation purposes. IEEE Transactions on Instrumentation and Measurement, 62(12), 3308-3314.  

 

Bui, T. D., & Nguyen, L. T. (2007). Recognizing postures in Vietnamese sign language with MEMS accelerometers. IEEE sensors journal, 7(5), 707-712.  

 

Bulut, M., & ÖZCAN, E. (2021). Integration of Battery Energy Storage Systems into Natural Gas Combined Cycle Power Plants in Fuzzy Environment. Journal of Energy Storage, 36, 102376.  

 

Chouhan, T., Panse, A., Voona, A. K., & Sameer, S. (2014). Smart glove with gesture recognition ability for the hearing and speech impaired. Paper presented at the Global Humanitarian Technology Conference-South Asia Satellite (GHTC-SAS), 2014 IEEE. 

 

Dang, L. M., Min, K., Wang, H., Piran, M. J., Lee, C. H., & Moon, H. (2020). Sensor-based and vision-based human activity recognition: A comprehensive survey. Pattern Recognition, 108, 107561.  

 

Ding, X. F., & Liu, H. C. (2019). A new approach for emergency decision-making based on zero-sum game with Pythagorean fuzzy uncertain linguistic variables. International Journal of Intelligent Systems, 34(7), 1667-1684.  

 

El Hayek, H., Nacouzi, J., Kassem, A., Hamad, M., & El-Murr, S. (2014). Sign to letter translator system using a hand glove. Paper presented at the e-Technologies and Networks for Development (ICeND), 2014 Third International Conference on. 

 

Elmahgiubi, M., Ennajar, M., Drawil, N., & Elbuni, M. S. (2015). Sign language translator and gesture recognition. Paper presented at the Computer & Information Technology (GSCIT), 2015 Global Summit on. 

 

Erol, A., Bebis, G., Nicolescu, M., Boyle, R. D., & Twombly, X. (2007). Vision-based hand pose estimation: A review. Computer Vision and Image Understanding, 108(1-2), 52-73.  

 

Fei, L., & Deng, Y. (2020). Multi-criteria decision making in Pythagorean fuzzy environment. Applied Intelligence, 50(2), 537-561.  

Fu, Y.-F., & Ho, C.-S. (2007). Static finger language recognition for handicapped aphasiacs. Paper presented at the Innovative Computing, Information and Control, 2007. ICICIC'07. Second International Conference on. 

 

Fu, Y.-F., & Ho, C.-S. (2008). Development of a programmable digital glove. Smart Materials and Structures, 17(2), 025031.  

 

Galka, J., Masior, M., Zaborski, M., & Barczewska, K. (2016). Inertial motion sensing glove for sign language gesture acquisition and recognition. IEEE sensors journal, 16(16), 6310-6316.  

 

Gao, W., Fang, G., Zhao, D., & Chen, Y. (2004). A Chinese sign language recognition system based on SOFM/SRN/HMM. Pattern Recognition, 37(12), 2389-2402.  

 

Garg, H. (2016). A novel accuracy function under interval-valued Pythagorean fuzzy environment for solving multicriteria decision making problem. Journal of Intelligent & Fuzzy Systems, 31(1), 529-540.  

 

Garg, H. (2017a). A new improved score function of an interval-valued Pythagorean fuzzy set based TOPSIS method. International Journal for Uncertainty Quantification, 7(5).  

 

Garg, H. (2017b). A novel improved accuracy function for interval valued Pythagorean fuzzy sets and its applications in the decision-making process. International Journal of Intelligent Systems, 32(12), 1247-1260.  

 

Garg, H. (2018). New exponential operational laws and their aggregation operators for interval-valued Pythagorean fuzzy multicriteria decision-making. International Journal of Intelligent Systems, 33(3), 653-683.  

 

Gumus, S., Kucukvar, M., & Tatari, O. (2016). Intuitionistic fuzzy multi-criteria decision making framework based on life cycle environmental, economic and social impacts: The case of US wind energy. Sustainable Production and Consumption, 8, 78-92.  

 

Gupta, D., Singh, P., Pandey, K., & Solanki, J. (2015). Design and development of a low cost Electronic Hand Glove for deaf and blind. Paper presented at the Computing for Sustainable Global Development (INDIACom), 2015 2nd International Conference on. 

 

Hamid, R. A., Albahri, A., Albahri, O., & Zaidan, A. (2021). Dempster–Shafer theory for classification and hybridised models of multi-criteria decision analysis for prioritisation: a telemedicine framework for patients with heart diseases. Journal of Ambient Intelligence and Humanized Computing, 1-35.  

 

Han, Y., Deng, Y., Cao, Z., & Lin, C.-T. (2020). An interval-valued Pythagorean prioritized operator-based game theoretical framework with its applications in multicriteria group decision making. Neural Computing and Applications, 32(12), 7641-7659.  

Harish, N., & Poonguzhali, S. (2015). Design and development of hand gesture recognition system for speech impaired people. Paper presented at the 2015 International Conference on Industrial Instrumentation and Control (ICIC). 

 

Haseli, G., Sheikh, R., Wang, J., Tomaskova, H., & Tirkolaee, E. B. (2021). A Novel Approach for Group Decision Making Based on the Best–Worst Method (G-BWM): Application to Supply Chain Management. Mathematics, 9(16), 1881.  

 

Ibarguren, A., Maurtua, I., & Sierra, B. (2010). Layered architecture for real-time sign recognition. The Computer Journal, 53(8), 1169-1183.  

 

Ibrahim, N., Hammed, H., Zaidan, A., Zaidan, B., Albahri, O., Alsalem, M., . . . Jalood, N. S. (2019). Multi-criteria evaluation and benchmarking for young learners’ English language mobile applications in terms of LSRW skills. IEEE Access, 7(7), 146620-146651.  

 

Ibrahim, N. B., Selim, M. M., & Zayed, H. H. (2018). An automatic arabic sign language recognition system (ArSLRS). Journal of King Saud University-Computer and Information Sciences, 30(4), 470-477.  

 

Iwasako, K., Soga, M., & Taki, H. (2014). Development of finger motion skill learning support system based on data gloves. Procedia Computer Science, 35, 1307-1314.  

 

Jadhav, A. J., & Joshi, M. P. (2016). AVR based embedded system for speech impaired people. Paper presented at the Automatic Control and Dynamic Optimization Techniques (ICACDOT), International Conference on. 

 

Jaiswal, S., & Gupta, P. (2021). A Review on American Sign Language Character Recognition. In Rising Threats in Expert Applications and Solutions (pp. 275-280): Springer. 

 

Ji, Y., Xu, Y., Qu, S., Xu, Z., Wu, Z., & Nabe, M. (2021). A Novel Two-Stage Multi-Criteria Decision-Making Method Based on Interval-Valued Pythagorean Fuzzy Aggregation Operators with Self-Confidence Levels. Arabian Journal for Science and Engineering, 46(2), 1561-1584.  

 

K.A.Dawood. (2020). Novel Multi-Perspective Usability Evaluation Framework for Selection of Open Source Software Based on BWM and Group VIKOR Techniques 

 

International Journal of Information Technology & Decision Making.  

 

Kadam, K., Ganu, R., Bhosekar, A., & Joshi, S. (2012). American sign language interpreter. Paper presented at the Technology for Education (T4E), 2012 IEEE Fourth International Conference on. 

 

Kalid, N., Zaidan, A., Zaidan, B., Salman, O. H., Hashim, M., Albahri, O., & Albahri, A. J. J. o. m. s. (2018). Based on real time remote health monitoring systems: a new approach for prioritization “large scales data” patients with chronic heart diseases using body sensors and communication technology. 42(4), 69.  

 

Kanwal, K., Abdullah, S., Ahmed, Y. B., Saher, Y., & Jafri, A. R. (2014). Assistive Glove for Pakistani Sign Language Translation. Paper presented at the 17th IEEE International Multi Topic Conference 2014. 

 

Kaur, K., & Kumar, P. (2016). HamNoSys to SiGML conversion system for sign language automation. Procedia Computer Science, 89, 794-803.  

 

Khambaty, Y., Quintana, R., Shadaram, M., Nehal, S., Virk, M. A., Ahmed, W., & Ahmedani, G. (2008). Cost effective portable system for sign language gesture recognition. Paper presented at the System of Systems Engineering, 2008. SoSE'08. IEEE International Conference on. 

 

Khatari, M. (2020). Multidimensional Benchmarking Framework for AQMs of Network Congestion Control Based on AHP and Group-TOPSIS. International Journal of Information Technology & Decision Making.  

 

Khatari, M., Zaidan, A., Zaidan, B., Albahri, O., & Alsalem, M. (2019). Multi-criteria evaluation and benchmarking for active queue management methods: Open issues, challenges and recommended pathway solutions. International Journal of Information Technology & Decision Making, 18(04), 1187-1242.  

 

Kim, J., Wagner, J., Rehm, M., & André, E. (2008). Bi-channel sensor fusion for automatic sign language recognition. Paper presented at the Automatic Face & Gesture Recognition, 2008. FG'08. 8th IEEE International Conference on. 

 

Kong, W., & Ranganath, S. (2008). Signing exact english (SEE): Modeling and recognition. Pattern Recognition, 41(5), 1638-1652.  

 

Kong, W., & Ranganath, S. (2014). Towards subject independent continuous sign language recognition: A segment and merge approach. Pattern Recognition, 47(3), 1294-1308.  

 

Kosmidou, V. E., & Hadjileontiadis, L. J. (2009). Sign language recognition using intrinsic-mode sample entropy on sEMG and accelerometer data. IEEE transactions on biomedical engineering, 56(12), 2879-2890.  

 

Krishnan, E., Mohammed, R., Alnoor, A., Albahri, O. S., Zaidan, A. A., Alsattar, H., . . . Hamid, R. A. (2021). Interval type 2 trapezoidal-fuzzy weighted with zero inconsistency combined with VIKOR for evaluating smart e-tourism applications. International Journal of Intelligent Systems.  

 

Kumar, P., Gauba, H., Roy, P. P., & Dogra, D. P. (2017). A multimodal framework for sensor based sign language recognition. Neurocomputing, 259, 21-38.  

LaViola, J. (1999). A survey of hand posture and gesture recognition techniques and technology. Brown university, providence, ri, 29.  

 

Lei, L., & Dashun, Q. (2015). Design of data-glove and Chinese sign language recognition system based on ARM9. Paper presented at the 2015 12th IEEE International Conference on Electronic Measurement & Instruments (ICEMI). 

 

Li, N., Garg, H., & Wang, L. (2019). Some novel interactive hybrid weighted aggregation operators with Pythagorean fuzzy numbers and their applications to decision making. Mathematics, 7(12), 1150.  

 

Liang, D., Darko, A. P., & Zeng, J. (2020). Interval-valued pythagorean fuzzy power average-based MULTIMOORA method for multi-criteria decision-making. Journal of Experimental & Theoretical Artificial Intelligence, 32(5), 845-874.  

 

Liang, W., Zhang, X., & Liu, M. (2015). The maximizing deviation method based on interval-valued Pythagorean fuzzy weighted aggregating operator for multiple criteria group decision analysis. Discrete Dynamics in Nature and Society, 2015.  

 

López-Noriega, J. E., Fernández-Valladares, M. I., & Uc-Cetina, V. (2014). Glove-based sign language recognition solution to assist communication for deaf users. Paper presented at the 2014 11th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE). 

 

Luqman, H., & Mahmoud, S. A. (2017). Transform-based Arabic sign language recognition. Procedia Computer Science, 117, 2-9.  

 

Majid, M. B. A., Zain, J. B. M., & Hermawan, A. (2015). Recognition of Malaysian sign language using skeleton data with neural network. Paper presented at the Science in Information Technology (ICSITech), 2015 International Conference on. 

 

Malik, R., Zaidan, A., Zaidan, B., Ramli, K., Albahri, O., Kareem, Z., . . . Zaidan, R. (2021). Novel roadside unit positioning framework in the context of the vehicle-to-infrastructure communication system based on AHP—Entropy for weighting and borda—VIKOR for uniform ranking. International Journal of Information Technology & Decision Making, 1-34.  

 

McGuire, R. M., Hernandez-Rebollar, J., Starner, T., Henderson, V., Brashear, H., & Ross, D. S. (2004). Towards a one-way American sign language translator. Paper presented at the Automatic Face and Gesture Recognition, 2004. Proceedings. Sixth IEEE International Conference on. 

 

McKee, M., Moran, C., & Zazove, P. (2020). Overcoming additional barriers to care for deaf and hard of hearing patients during COVID-19. JAMA Otolaryngology–Head & Neck Surgery, 146(9), 781-782.  

 

Mohammed, K., Jaafar, J., Zaidan, A., Albahri, O., Zaidan, B., Abdulkareem, K. H., . . . Albahri, A. (2020a). A Uniform Intelligent Prioritisation for Solving Diverse and Big Data Generated From Multiple Chronic Diseases Patients Based on Hybrid Decision-Making and Voting Method. IEEE Access, 8, 91521-91530.  

 

Mohammed, K., Jaafar, J., Zaidan, A., Albahri, O., Zaidan, B., Abdulkareem, K. H., . . . Albahri, A. J. I. A. (2020b). A Uniform Intelligent Prioritisation for Solving Diverse and Big Data Generated From Multiple Chronic Diseases Patients Based on Hybrid Decision-Making and Voting Method. 8, 91521-91530.  

 

Mohammed, K., Zaidan, A., Zaidan, B., Albahri, O., Albahri, A., Alsalem, M., . . . biomedicine, p. i. (2020). Novel technique for reorganisation of opinion order to interval levels for solving several instances representing prioritisation in patients with multiple chronic diseases. 185, 105151.  

 

Mohammed, T. J., Albahri, A., Zaidan, A., Albahri, O., Al-Obaidi, J. R., Zaidan, B., . . . Hadi, S. M. (2021). Convalescent-plasma-transfusion intelligent framework for rescuing COVID-19 patients across centralised/decentralised telemedicine hospitals based on AHP-group TOPSIS and matching component. Applied Intelligence, 1-32.  

 

Mohandes, M., & Deriche, M. (2013). Arabic sign language recognition by decisions fusion using Dempster-Shafer theory of evidence. Paper presented at the 2013 Computing, Communications and IT Applications Conference (ComComAp). 

 

Mohandes, S. R., & Zhang, X. (2021). Developing a Holistic Occupational Health and Safety risk assessment model: An application to a case of sustainable construction project. Journal of Cleaner Production, 291, 125934.  

 

Mummadi, C. K., Leo, F. P. P., Verma, K. D., Kasireddy, S., Scholl, P. M., Kempfle, J., & Laerhoven, K. V. (2018). Real-time and embedded detection of hand gestures with an IMU-based glove. Paper presented at the Informatics. 

 

Naz, S., Ashraf, S., & Akram, M. (2018). A novel approach to decision-making with Pythagorean fuzzy information. Mathematics, 6(6), 95.  

 

Oszust, M., & Wysocki, M. (2013). Recognition of signed expressions observed by Kinect Sensor. Paper presented at the Advanced Video and Signal Based Surveillance (AVSS), 2013 10th IEEE International Conference on. 

 

Oudah, M., Al-Naji, A., & Chahl, J. (2020). Hand gesture recognition based on computer vision: a review of techniques. journal of Imaging, 6(8), 73.  

 

Oz, C., & Leu, M. C. (2007). Linguistic properties based on American Sign Language isolated word recognition with artificial neural networks using a sensory glove and motion tracker. Neurocomputing, 70(16-18), 2891-2901.  

 

Oz, C., & Leu, M. C. (2011). American sign language word recognition with a sensory glove using artificial neural networks. Engineering Applications of Artificial Intelligence, 24(7), 1204-1213.  

 

Pariwat, T., & Seresangtakul, P. (2021). Multi-Stroke Thai Finger-Spelling Sign Language Recognition System with Deep Learning. Symmetry 2021, 13, 262. In: s Note: MDPI stays neutral with regard to jurisdictional claims in published …. 

 

Peng, J.-j., Wang, J.-q., Wang, J., Yang, L.-J., & Chen, X.-h. (2015). An extension of ELECTRE to multi-criteria decision-making problems with multi-hesitant fuzzy sets. nformation Sciences, 307, 113-126.  

 

Peng, X., & Selvachandran, G. (2019). Pythagorean fuzzy set: state of the art and future directions. Artificial Intelligence Review, 52(3), 1873-1927.  

 

Peng, X., & Yang, Y. (2016). Fundamental properties of interval-valued Pythagorean fuzzy aggregation operators. International Journal of Intelligent Systems, 31(5), 444-487.  

 

Phi, L. T., Nguyen, H. D., Bui, T. Q., & Vu, T. T. (2015). A glove-based gesture recognition system for Vietnamese sign language. Paper presented at the 2015 15th International Conference on Control, Automation and Systems (ICCAS). 

 

Plawiak, P., Sosnicki, T., Niedzwiecki, M., Tabor, Z., & Rzecki, K. (2016). Hand body language gesture recognition based on signals from specialized glove and machine learning algorithms. IEEE Transactions on Industrial Informatics, 12(3), 1104-1113.  

 

Pradhan, G., Prabhakaran, B., & Li, C. (2008). Hand-gesture computing for the hearing and speech impaired. IEEE Annals of the History of Computing, 15(02), 20-27.  

 

Praveen, N., Karanth, N., & Megha, M. (2014). Sign language interpreter using a smart glove. Paper presented at the Advances in Electronics, Computers and Communications (ICAECC), 2014 International Conference on. 

 

Preetham, C., Ramakrishnan, G., Kumar, S., Tamse, A., & Krishnapura, N. (2013). Hand talk-implementation of a gesture recognizing glove. Paper presented at the India Educators' Conference (TIIEC), 2013 Texas Instruments. 

 

Rahman, K., Abdullah, S., Shakeel, M., Ali Khan, M. S., & Ullah, M. (2017). Interval-valued Pythagorean fuzzy geometric aggregation operators and their application to group decision making problem. Cogent Mathematics, 4(1), 1338638.  

 

Ramli, S. (2012). GMT feature extraction for representation of BIM sign language. Paper presented at the 2012 IEEE Control and System Graduate Research Colloquium. 

 

Ren, P., Xu, Z., & Gou, X. (2016). Pythagorean fuzzy TODIM approach to multi-criteria decision making. Applied Soft Computing, 42, 246-259.  

 

Rishikanth, C., Sekar, H., Rajagopal, G., Rajesh, R., & Vijayaraghavan, V. (2014). Low-cost intelligent gesture recognition engine for audio-vocally impaired individuals. Paper presented at the Global Humanitarian Technology Conference (GHTC), 2014 IEEE. 

 

Rosero-Montalvo, P. D., Godoy-Trujillo, P., Flores-Bosmediano, E., Carrascal-García, J., Otero-Potosi, S., Benitez-Pereira, H., & Peluffo-Ordóñez, D. H. (2018). Sign language recognition based on intelligent glove using machine learning techniques. Paper presented at the 2018 IEEE Third Ecuador Technical Chapters Meeting (ETCM). 

 

Sagawa, H., & Takeuchi, M. (2000). A method for recognizing a sequence of sign language words represented in a japanese sign language sentence. Paper presented at the Automatic Face and Gesture Recognition, 2000. Proceedings. Fourth IEEE International Conference on. 

 

Salih, M. M., Zaidan, B., & Zaidan, A. (2020). Fuzzy decision by opinion score method. Applied Soft Computing, 96, 106595.  

 

Sekar, H., Rajashekar, R., Srinivasan, G., Suresh, P., & Vijayaraghavan, V. (2016). Low-cost intelligent static gesture recognition system. Paper presented at the Systems Conference (SysCon), 2016 Annual IEEE. 

 

Seker, S. (2020). A novel integrated MCDM approach: An application for selection of the optimal Fiber optical access network strategy. Journal of Intelligent & Fuzzy Systems, 38(1), 565-575.  

 

Seker, S., & Aydin, N. (2020). Hydrogen production facility location selection for Black Sea using entropy based TOPSIS under IVPF environment. International Journal of Hydrogen Energy, 45(32), 15855-15868.  

 

Seker, S., & Kahraman, C. (2021). Socio-economic evaluation model for sustainable solar PV panels using a novel integrated MCDM methodology: A case in Turkey. Socio-Economic Planning Sciences, 77, 100998.  

 

Sharma, D., Verma, D., & Khetarpal, P. (2015). LabVIEW based Sign Language Trainer cum portable display unit for the speech impaired. Paper presented at the India Conference (INDICON), 2015 Annual IEEE. 

 

Sharma, V., Kumar, V., Masaguppi, S. C., Suma, M., & Ambika, D. (2013). Virtual talk for deaf, mute, blind and normal humans. Paper presented at the 2013 Texas Instruments India Educators' Conference. 

 

Shukor, A. Z., Miskon, M. F., Jamaluddin, M. H., bin Ali, F., Asyraf, M. F., & bin Bahar, M. B. (2015). A new data glove approach for Malaysian sign language detection. Procedia Computer Science, 76, 60-67.  

Song, P., Li, L., Huang, D., Wei, Q., & Chen, X. (2020). Loan risk assessment based on Pythagorean fuzzy analytic hierarchy process. Paper presented at the Journal of physics: conference series. 

 

Sriram, N., & Nithiyanandham, M. (2013). A hand gesture recognition based communication system for silent speakers. Paper presented at the 2013 International Conference on Human Computer Interactions (ICHCI). 

 

Tanyawiwat, N., & Thiemjarus, S. (2012). Design of an assistive communication glove using combined sensory channels. Paper presented at the Wearable and Implantable Body Sensor Networks (BSN), 2012 Ninth International Conference on. 

 

Tateno, S., Liu, H., & Ou, J. (2020). Development of Sign Language Motion Recognition System for Hearing-Impaired People Using Electromyography Signal. Sensors, 20(20), 5807.  

 

Tirkolaee, E. B., Dashtian, Z., Weber, G.-W., Tomaskova, H., Soltani, M., & Mousavi, N. S. (2021). An integrated decision-making approach for green supplier selection in an agri-food supply chain: threshold of robustness worthiness. Mathematics, 9(11), 1304.  

 

Tirkolaee, E. B., Goli, A., Faridnia, A., Soltani, M., & Weber, G.-W. (2020). Multi-objective optimization for the reliable pollution-routing problem with cross-dock selection using Pareto-based algorithms. Journal of Cleaner Production, 276, 122927.  

 

Tirkolaee, E. B., Goli, A., & Weber, G.-W. (2020). Fuzzy mathematical programming and self-adaptive artificial fish swarm algorithm for just-in-time energy-aware flow shop scheduling problem with outsourcing option. IEEE Transactions on Fuzzy Systems, 28(11), 2772-2783.  

 

Torkayesh, A. E., Vandchali, H. R., & Tirkolaee, E. B. (2021). Multi-objective optimization for healthcare waste management network design with sustainability perspective. Sustainability, 13(15), 8279.  

 

Trottier-Lapointe, W., Majeau, L., El-Iraki, Y., Loranger, S., Chabot-Nobert, G., Borduas, J., . . . Lapointe, J. (2012). Signal processing for low cost optical dataglove. Paper presented at the 2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA). 

 

Tubaiz, N., Shanableh, T., & Assaleh, K. (2015). Glove-based continuous Arabic sign language recognition in user-dependent mode. IEEE Transactions on Human-Machine Systems, 45(4), 526-533.  

 

Vijay, P. K., Suhas, N. N., Chandrashekhar, C. S., & Dhananjay, D. K. (2012). Recent developments in sign language recognition: A review. Int J Adv Comput Eng Commun Technol, 1, 21-26.  

Vijayalakshmi, P., & Aarthi, M. (2016). Sign language to speech conversion. Paper presented at the 2016 International Conference on Recent Trends in Information Technology (ICRTIT). 

 

Vutinuntakasame, S., Jaijongrak, V.-r., & Thiemjarus, S. (2011). An assistive body sensor network glove for speech-and hearing-impaired disabilities. Paper presented at the Body Sensor Networks (BSN), 2011 International Conference on. 

 

Wadhawan, A., & Kumar, P. (2020). Deep learning-based sign language recognition system for static signs. Neural Computing and Applications, 32(12), 7957-7968.  

 

Wang, L., & Li, N. (2020). Pythagorean fuzzy interaction power Bonferroni mean aggregation operators in multiple attribute decision making. International Journal of Intelligent Systems, 35(1), 150-183.  

 

Young, A., Oram, R., & Napier, J. (2019). Hearing people perceiving deaf people through sign language interpreters at work: on the loss of self through interpreted communication. Journal of Applied Communication Research, 47(1), 90-110.  

 

Zaidan, A., Zaidan, B., Alsalem, M., Albahri, O., Albahri, A., & Qahtan, M. (2020). Multi-agent learning neural network and Bayesian model for real-time IoT skin detectors: a new evaluation and benchmarking methodology. Neural Computing and Applications, 32(12), 8315-8366.  

 

Zaidan, A., Zaidan, B., Alsalem, M., Momani, F., & Zughoul, O. (2020). Novel Multiperspective Hiring Framework for the Selection of Software Programmer Applicants Based on AHP and Group TOPSIS Techniques. International Journal of Information Technology & Decision Making, 18(4), 1-73.  

 

Zhang, X. (2016). A novel approach based on similarity measure for Pythagorean fuzzy multiple criteria group decision making. International Journal of Intelligent Systems, 31(6), 593-611.  

 

Zhang, X., Chen, X., Li, Y., Lantz, V., Wang, K., & Yang, J. (2011). A framework for hand gesture recognition based on accelerometer and EMG sensors. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 41(6), 1064-1076.  

 

Zhang, X., & Xu, Z. (2014). Extension of TOPSIS to multiple criteria decision making with Pythagorean fuzzy sets. International Journal of Intelligent Systems, 29(12), 1061-1078.  

 

Zhao, K., & Huang, X. (2018). An extension of ELECTRE to multi-criteria decision making problems with extended hesitant fuzzy sets. SCIENCE AND TECHNOLOGY, 21(4), 328-343.  

 

Zughoul, O. (2020). Novel Triplex Procedure for Ranking the Ability of Software Engineering Students Based on Two levels of AHP and Group TOPSIS Techniques International Journal of Information Technology & Decision Making.  

 

 

 

 

 

 

 

 

  

 

 


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.