UPSI Digital Repository (UDRep)
|
![]() |
|
Total records found : 5 |
Simplified search suggestions : Wang Shir Li |
1 | 2021 Article | Interactive blood vessel segmentation from retinal fundus image based on canny edge detector Wang, Shir Li Optometrists, ophthalmologists, orthoptists, and other trained medical professionals use fundus photography to monitor the progression of certain eye conditions or diseases. Segmentation of the vessel tree is an essential process of retinal analysis. In this paper, an interactive blood vessel segmentation from retinal fundus image based on Canny edge detection is proposed. Semi-automated segmentation of specific vessels can be done by simply moving the cursor across a particular vessel. The pre-processing stage includes the green color channel extraction, applying Contrast Limited Adaptive Histogram Equalization (CLAHE), and retinal outline removal. After that, the edge detection techniques, which are based on the Canny algorithm, will be applied. The vessels will be selected interactively on the developed graphical user interface (GUI). The program will draw out the vessel edges. After that, those vessel edges will be segmented to bring focus on its details or detect the abnormal vess..... 1333 hits |
2 | 2021 Article | A CNN based handwritten numeral recognition model for four arithmetic operations Wang, Shir Li The pandemic of Covid-19 has caused a shift of paradigm of education, from face-to-face to e-learning. E-learning leads to an escalation in digitalization of handwritten documents because it requires submission of homework and assignments through online. To help teachers in checking digitalized handwritten homework, this paper proposes an automatic checking system based on a convolutional neural network (CNN) for handwritten numeral recognition. The CNN is used to recognize four arithmetic operations in mathematical questions consisting of addition, deduction, multiplication and division. The performance CNN in handwritten numeral recognition have been optimized in terms of activation function and gradient descent algorithm. The proposed CNN is also trained and tested with the MNIST handwritten data set. The experimental results show that the recognition accuracy the improved CNN improves to a certain extent as compared to before optimization. ? 2021 The Authors. Published by Elsevier ..... 1650 hits |
3 | 2023 Article | Convolutional neural network optimized by differential evolution for electrocardiogram classification Wang Shir Li The Coronavirus disease 2019, or COVID-19, has shifted the medical paradigm from face-to-face to telehealth. Telehealth has become a vital resource to contain the virus spread and ensure the continued care of patients. In terms of preventing cardiovascular diseases, automating electrocardiogram (ECG) classification is a promising telehealth intervention. The healthcare service ensures that patient care is appropriate, comfortable, and accessible. Convolutional neural networks (CNNs) have demonstrated promising results in ECG categorization, which require high accuracy and short training time to ensure healthcare quality. This study proposes a one-dimensional-CNN (1D-CNN) arrhythmia classification based on the differential evolution (DE) algorithm to optimize the accuracy of ECG classification and training time. The performance of 1D-CNNs of different activation functions are optimized based on the standard DE algorithm. Finally, based on MIT-BIH and SCDH arrhythmia databases, the perfo..... 207 hits |
4 | 2024 Article | A literature review of the state of the art of sustainable waste collection and vehicle routing problem Wang Shir Li [No abstract available].. 3 hits |
5 | 2024 Article | Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) prediction model based on limited peat samples using an evolved artificial neural network Wang Shir Li, Sumayyah Dzulkifly Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) are involuntary by-products of incomplete combustion and are highly toxic to humans and the environment. The Malaysian peat is often acidic or extremely acidic having high levels of chlorine and/or other organic acids that act as catalysts or precursors in PCDD/Fs formation. This study aims to predict PCDD/Fs emissions in peat soil using an artificial neural network (ANN) approach based on limited emission data and selected physico-chemical properties. The ANN's prediction performance is affected by uncertainties in its initial connection weights. To improve prediction performance, an optimisation algorithm, termed differential evolution (DE), is used to optimise the ANN's initial connection weights and bias. The study adopts several ANNs with fixed architecture to predict PCDD/Fs emissions, each consisting of a multilayer perceptron (MLP) with a backpropagation algorithm. Eight input variables and one output..... 0 hits |