UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon


Browse by: Year_icon Subject Year_icon Publisher Year_icon Year
Total records found : 2
Simplified search suggestions : Abdulkareem Karrar Hameed
12020
Article
A new standardisation and selection framework for real-time image dehazing algorithms from multi-foggy scenes based on fuzzy Delphi and hybrid multi-criteria decision analysis methods
Abdulkareem, Karrar Hameed
Given the rapid development of dehazing image algorithms, selecting the optimal algorithm based on multiple criteria is crucial in determining the efficiency of an algorithm. However, a sufficient number of criteria must be considered when selecting an algorithm in multiple foggy scenes, including inhomogeneous, homogenous and dark foggy scenes. However, the selection of an optimal real-time image dehazing algorithm based on standardised criteria presents a challenge. According to previous studies, a standardisation and selection framework for real-time image dehazing algorithms based on multi-foggy scenes is not yet available. To address this gap, this study proposes a new standardisation and selection framework based on fuzzy Delphi (FDM) and hybrid multi-criteria analysis methods. Experiments are also conducted in three phases. Firstly, the image dehazing criteria are standardised based on FDM. Secondly, an evaluation experiment is conducted based on standardised criteria and nine r.....

689 hits

22020
Article
A novel Multi-perspective benchmarking framework for selecting image dehazing intelligent algorithms based on BWM and group VIKOR techniques
Abdulkareem, Karrar Hameed
The increasing demand for image dehazing-based applications has raised the value of efficient evaluation and benchmarking for image dehazing algorithms. Several perspectives, such as inhomogeneous foggy, homogenous foggy, and dark foggy scenes, have been considered in multi-criteria evaluation. The benchmarking for the selection of the best image dehazing intelligent algorithm based on multi-criteria perspectives is a challenging task owing to (a) multiple evaluation criteria, (b) criteria importance, (c) data variation, (d) criteria conflict, and (e) criteria tradeoff. A generally accepted framework for benchmarking image dehazing performance is unavailable in the existing literature. This study proposes a novel multi-perspective (i.e., an inhomogeneous foggy scene, a homogenous foggy scene, and a dark foggy scene) benchmarking framework for the selection of the best image dehazing intelligent algorithm based on multi-criteria analysis. Experiments were conducted in three stages. Firs.....

692 hits

Filter
Loading results...



Specific Period
Loading results...



Top 5 related keywords (beta)

Loading results...



Recently Access Item




Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.